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Abstract

We extend the random coefficients marginal treatment effect (MTE) model introduced

by Björklund and Moffitt (1987) to a modern nonparametric framework with clearer

identification conditions. The approach captures the MTE with a coefficient on the

propensity score in the outcome equation which varies with the score. We provide an

illustrative application to the impact of welfare program participation on labor supply,

first modifying the standard labor supply model of transfers to incorporate marginal

effects. We estimate a U-shaped MTE curve, initially increasing and then decreasing

as participation rates rise. Marginal work disincentives are essentially zero in some

ranges but sizable in others.
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Marginal treatment effects are now an established part of the literature on causal

models. Given a continuous instrument, the marginal treatment effect (MTE) is the causal

response to an offered treatment of individuals, or units in general, who are on the margin

of participating in the treatment. Thus the MTE is a continuous version of the standard

causal effect identified by a discrete instrument (e.g., a LATE). The origin of the MTE

dates back to Björklund and Moffitt (1987), which appeared in this journal, and was

framed as a random coefficients model. While the authors noted that, when properly

specified, the random coefficient formulation was equivalent to what was then called the

generalized Roy model—now called the Rubin Causal Model specified in terms of potential

outcomes—they argued that the random coefficient formulation had interpretative

advantages because it directly specified the heterogeneous response in terms of a single

well-defined function, similar to a LATE with a discrete instrument.

The MTE literature has evolved in many directions since Björklund and Moffitt

(1987). The MTE framework was under utilized until Heckman and Vytlacil (1999, 2005)

formalized the concept, clarified its identification, and demonstrated that familiar

treatment effect concepts could be characterized as weighted averages of underlying

MTEs.1 However, those authors formulated the MTE in a control function framework,

with outcomes as a function of treatment conditional on the value of the error term at the

indifference margin rather than as a random coefficients model (as noted in a comment by

Moffitt, 1999). In the applications that have followed (see e.g., Doyle, 2007; Carneiro et al.,

2011; Maestas et al., 2013; Kowalski, 2016; Cornelissen et al., 2018; Bhuller et al., 2020), the

MTE is generally expressed either as a reduced form in the propensity score or in a control

function approach. The random coefficient formulation has not been generally employed.

1Angrist et al. (2000) also showed that a continuous elasticity curve estimated with IV yields a weighted

average of underlying continuous effects.
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This paper updates the Björklund-Moffitt random coefficients model with a more

modern and now well-understood nonparametric formulation. Björklund-Moffitt assumed

multivariate normality for all unobservables and applied traditional parametric maximum

likelihood rather than the simple instrumental variable (IV) approach in use today. We

show that the random coefficient formulation results in a model where the outcome is a

function of the propensity score but that the coefficient on that score can vary with the

propensity score itself. It is the coefficient on the propensity score that is the object of

interest, and nonparametric estimation of the model requires nonparametric estimation of

that coefficient. The MTE is then calculable from the manner in which that coefficient

varies with the propensity score. This formulation has intuitive appeal and is different than

that used in most other MTE applications, although we stress that it has a one-to-one

equivalence with most other approaches.

A second contribution of our paper is to provide an illustration of the random

coefficient approach with an application to the literature on the effects of welfare programs

on labor supply. While there have been a wide variety of applications of the MTE

approach—to foster care and child removal (Doyle, 2007; Bald et al., 2019), the Social

Security Disability Insurance program (Maestas et al., 2013), education (Carneiro et al.,

2011), health insurance (Kowalski, 2016), early child care (Cornelissen et al., 2018), and

incarceration (Bhuller et al., 2020)—this paper is the first to apply the method to the effect

of welfare programs on labor supply. The vast literature on welfare program work

disincentives, which represents responses as a function of welfare guarantees and tax rates

(see Moffitt, 1992, 2003; Ziliak, 2016, for reviews) assumes constant coefficients on the

variables of interest and allows only limited forms of unobserved heterogeneity. In a MTE

framework, instead, heterogeneity allows the labor supply disincentives of those on the

margin of participating to differ from the responses of those already on the program, and

to change as a program expands or contracts, thereby bringing (removing) those on the

margin into (from) the program. Our paper develops a new but simple theoretical static
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labor supply model which shows that the sign of the MTE for labor supply is ambiguous

even when utility functions are well-behaved and when positive selection occurs.

We then illustrate how to apply the random coefficients MTE framework empirically

with an application to the pre-1996 version of the Aid to Families with Dependent Children

(AFDC) program—the last U.S. cash welfare program to take the classic

negative-income-tax form. The random coefficient model is specified and estimated using

instruments based on three distinct sources of variation in the probability of program

participation. The results show a U-shaped MTE curve: as participation in the program

expands from low participation rates to modest ones, labor supply supply disincentives of

those brought into the program grow (i.e., become more negative) but, as participation

rates rise beyond a certain threshold, the marginal work disincentives fall (i.e., become less

negative). We provide an economic interpretation of this U-shape by arguing that it is

likely due to changing responses of those in full-time and part-time work. The policy

implication is that work disincentives of welfare program participation are not large on

average but the average response masks some margins where effects are close to zero and

some where the effects are sizable. Beyond our methodological contribution, our analysis

also contributes to the empirical literature that studies the effects of welfare programs on

labor supply.

The paper proceeds as follows. Section 1 sets up the simple random coefficient model

and Section 2 has the application, consisting of a short theoretical section adapting the

standard labor supply model with welfare programs to have heterogeneous responses, and

then an empirical illustration. Section 3 concludes the paper.
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1 The Random Coefficient Model

The Björklund and Moffitt (1987) model was the following:

Yi = Xiβ + αiTi + ϵi (1)

αi = Wiγ + ωi (2)

T ∗
i = αi − ϕi (3)

ϕi = Ziψ + νi (4)

Ti = 1(T ∗
i > 0) (5)

where Yi is the outcome for individual i, Xi is a vector of observables, and Ti is a binary

treatment indicator. The effect of the treatment on the outcome is the random coefficient

αi, which varies across individuals. Equation (2) shows the effect to be related to

observables Wi and an unobservable ωi. Equation (3) specifies the propensity to be in

treatment as a function of the “gains” (αi) and the “costs” (ϕi) of participation, which is a

particular Roy model interpretation that is not necessary for the econometrics of the

problem. Costs are a function of an observable vector Zi and an unobservable νi, with Zi

presumed to contain at least one element not in Xi or Wi. Equation (5) expresses

treatment determination as a threshold function of an index, but the threshold formulation

is not necessary for anything here.2 All unobservables were assumed to be mean zero and

distributed independently of Xi, Wi, and Zi but not necessarily independently of each

other.

2Vytlacil (2002) shows that the latent index model familiar in selection models is equivalent to the LATE

model’s assumptions of monotonicity and separability.
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The authors noted that the model implies that:

Yi =


Xiβ +Wiγ + ϵi + ωi if Ti=1

Xiβ + ϵi if Ti=0

(6)

and hence is equivalent to the conventional potential outcomes framework in the literature,

with suitable changes of notation and variable definitions.

Björklund and Moffitt assumed the unobservables had a multivariate normal

distribution and estimated the model with maximum likelihood. The goal in this paper is

to relax those parametric assumptions, remove unnecessary identifying assumptions, and

specify a more transparent model in line with modern approaches. To simplify notation,

assume we are implicitly conditioning on Xi and Wi, and assume that Zi is a scalar. We

write a basic model as:

Yi = βi + αiTi (7)

T ∗
i = m(Zi) + δi (8)

Ti = 1(T ∗
i > 0) (9)

Each individual i has a value of Y if participating and if not participating. The function

m(·) is not allowed to be individual-specific. The unobservable δi is assumed to be

separable from the m(·) function. These assumptions are needed to satisfy the

monotonicity condition of Imbens and Angrist (1994).3

The object of interest is the distribution of αi. Selection in this model can occur

either on the intercept (βi) or the slope coefficient (αi) or both because both may be

related to δi. Identification is most easily seen in the reduced form; obtained by writing the

3See Vytlacil (2002) and Heckman and Vytlacil (2005) for a discussion.
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means of Y and T conditional on Zi:

E(Yi | Zi = z) = E(βi | Zi = z) + E(αi | Ti = 1, Zi = z) Pr(Ti = 1 | Zi = z) (10)

Pr(Ti = 1 | Zi = z) = Pr[δi ≥ −m(z)] (11)

Identification of E(αi | Ti = 1, Zi = z) requires, at minimum, that Zi satisfy two mean

independence requirements, one for the intercept and one for the slope coefficient:

E(βi | Zi = z) = β (A1)

E(αi | Ti = 1, Zi = z) = g[E(Ti | Zi = z)] (A2)

where g is the effect of the treatment on the treated conditional on Zi. That effect depends

on the shape of the distribution of αi and how different fractions of participants are

selected from different portions of that distribution. While equation (A1) is familiar,

equation (A2) may be less so. The usual assumption in the literature is that the two

potential outcomes, βi and βi + αi, are fully independent of Zi, which implies that αi is as

well. Equation (A2) is a weaker condition which states that all that is required is that the

mean of αi conditional on participation is independent of Zi conditional on the

participation probability (i.e., the propensity score). Variation in Zi generates variation in

participation which induces variation in the conditional mean of αi, but there should be no

other channel by which Zi affects that conditional mean.

Inserting equations (A1) and (A2) into the main model in equations (10)–(11), and

denoting the propensity score as F (Zi) = E(Ti | Zi), where F is the cdf of δ, we obtain two

estimating equations:

Yi = β + g[F (Zi)]F (Zi) + ϵi (12)

Ti = F (Zi) + ξi (13)
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where ϵi and ξi are mean zero and orthogonal to the RHS by construction. No other

restriction on these error terms is necessary as this is a reduced form of the model.

Equation (12) is the key to our approach and forms the basis for estimation. It shows

that the population mean of Yi—taken over participants and nonparticipants—equals a

constant plus the mean response of those in the program times the fraction that is in the

program. The implication of this model specification—that is, as a random coefficient

model—is that preference heterogeneity is detectable by a nonlinearity in the response of

the population mean of Yi to changes in the participation probability. If responses are

homogeneous and hence the same for all members of the population, the function g reduces

to a constant and therefore a shift in the fraction on the program has a linear effect on the

population mean of Yi. However, if the responses of those on the margin vary, the response

of the population mean of Yi to a change in participation will depart from linearity.

Estimation can proceed by assuming the function g is a nonparametric function of F ,

thereby allowing the data to determine the shape of g and hence the MTE curve (defined

below).4

Nonparametric identification of the parameters of the model—β, the function g at

every point of the propensity score F , and the propensity score F itself—has been

extensively discussed in the literature, so we only briefly restate those conditions. The

propensity score F is identified at every data point Zi from the second equation from the

mean of Ti at each value of Zi (apart from sampling error). With identification of the

propensity score F , the LATE of Imbens and Angrist (1994) is identified by the discrete

difference in Y between two points z and z′ divided by the difference in the propensity score

between those two points. With multiple values of z, multiple LATE values are identified.

4The term g[F (Zi)]F (Zi) in equation (12) can be collapsed into a single function of F (Zi) and estimation

can be conducted by a direct nonparametric estimation of that equation. Equation (12) factors F (Zi) out

and labels its coefficient as g[F (Zi)]. Testing for homogeneity is slightly easier in this formulation because

it only requires testing whether g varies with the score instead of testing, equivalently, whether the outcome

is quadratic in the score.
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A MTE is a continuous version of this and requires some smoothing method across discrete

values of Z. The MTE is computed by ∂Y/∂F = g′(F )F + g(F ). However, while the MTE

∂Y/∂F is identified, g and g′ are not unless there is a value of Zi in the data for which

F (Zi) = 0. In that case, β is identified from the mean of Yi at that point and hence g is

identified pointwise at every other value of z since the propensity score is identified. If no

such value is in the data, then g can only be identified subject to a normalization of its

value at a particular value of z or if the value of g is known at some value.

2 Illustration Using the Labor Supply Effects of a Transfer

Program

We first modify the standard static model of the labor supply response to transfer

programs then provide an illustrative estimation of the model.

2.1 Modifying the Static Labor Supply Model for Heterogeneous

Response

The canonical static model of the labor supply response to transfers (Moffitt, 1983;

Chan and Moffitt, 2018) assumes utility to be:

U(Hi, Yi; θi)− ϕiPi (14)

where Hi is hours of work for individual i, Yi is disposable income, Pi is a program

participation indicator (switching from Ti to Pi to use the standard notation of the

transfers literature), θi is a vector of labor supply preference parameters, and ϕi is a scalar

representing fixed costs of participation in utility units whose distribution is in the positive

domain. The presence of Pi allows for the presence of fixed costs of participation—in

money, time, or utility (stigma), with the exact type unspecified and scaled in units of
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utility (Moffitt, 1983; Daponte et al., 1999; Currie, 2006). Some type of cost is required to

fit the data on almost all transfer programs because many individuals who are eligible for

transfer programs do not participate in them. The presence of participation costs also

provides a potential source of exogenous variation in participation, and such variation will

be used in the empirical work in the next section.

The individual faces an hourly wage rate Wi and has available exogenous non-transfer

non-labor income Ni. The welfare benefit formula is Bi = G− tWiHi − rNi, where G is the

guarantee and t and r are the tax rates on earnings and nonlabor income, respectively, and

hence the budget constraint is:

Yi =


Wi(1− t)Hi +G+ (1− r)Ni if Pi = 1

WiHi +Ni if Pi = 0

(15)

The resulting labor supply model is represented by two functions, a labor supply function

conditional on participation and a participation function:

Hi = H[Wi(1− tPi), Ni + Pi(G− rNi); θi] (16)

P ∗
i = V [Wi(1− t), G+Ni(1− r); θi]− V [Wi, Ni; θi]− ϕi (17)

Pi = 1(P ∗
i ≥ 0) (18)

where H[·] is the labor supply function, V [·] is the indirect utility function and 1(·) is the

indicator function. The direct utility gain from participation (the change in V [·]) must be

greater than costs to generate participation.

The labor supply response to the program for individual i conditional on the budget

constraint parameters is the change in hours worked from participating:

△i(θi|Ci) = H[Wi(1− t), G+Ni(1− r); θi]−H[Wi, Ni; θi] (19)
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where Ci = [Wi, Ni, G, t, r] is the set of budget constraint variables. The marginal labor

supply response is the value of △i for individuals whose θ puts them on the margin of

participation. But who is on the margin of participation also depends on ϕi. It is the set of

joint values of these two variables that determines who is on that margin. The set of values

that make participation indifferent are the values of θD and ϕD that satisfy the equation:

0 = V [Wi(1− t), G+Ni(1− r); θD]− V [Wi, Ni; θD]− ϕD (20)

and it is the set of values (θi, ϕi) that fall on one side of this (θD, ϕD) locus that generate

participation. If we use this locus to define a function θD = f(ϕD|C), then the marginal

labor supply response conditional on the budget constraint is the integral of this function

over the distribution of participation costs ϕ.

One difference with the textbook Roy model arises here. In that model, positive

selection is said to occur when individuals who have greater gains in the outcome variable

(e.g., a higher earnings payoff from college) are more likely to participate (e.g., attend

college). But here there is no necessary relationship between the labor supply response, θ,

and the probability of participating; if “positive” selection means that those with greater

labor supply reductions are more likely to participate, such selection does not necessarily

hold. Positive selection only occurs on indirect utility V [·], with greater gains in V leading

to higher participation. However, greater gains in V could come either from greater gains

in consumption or leisure. As a consequence, as participation rises, the marginal labor

supply response could rise, fall, or stay the same as relative preferences for consumption

and leisure change over new parts of the distribution. This is an additional reason that a

nonparametric specification of that response is needed for any empirical work.

To estimate the marginal labor supply response, let Sθϕ denote the set of parameters

that generate participation. Then the mean effect of the transfer program over the entire

population, participants and non-participants combined, conditional on the budget
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constraint, is:

△̃ = E(△iPi|Ci)

=

∫
Sθϕ

∫
△i(θi|Ci)dJ(θi, ϕi)

(21)

where J(θi, ϕi) is the joint distribution function of θi and ϕi. With an exogenous shift in

the distribution of ϕi (e.g., a reduction in costs), the mean labor supply response is shifted

but so is the participation rate:

P = E(Pi|Ci)

=

∫
Sϕ

∫
Sθ

1{V [Wi(1− t), G+Ni(1− r); θi]− V [Wi, Ni; θi]− ϕi}dJ(θi, ϕi)
(22)

where Sθ and Sϕ represent the unconditional supports of the two parameters. The marginal

labor supply at that point is the change in mean labor supply from a small increment in

participation, or ∂△̃/∂P . Thus estimating mean labor supply responses as a function of

the participation rate will permit estimation of the MTE.

2.2 Empirical Illustration

The general form of the random coefficient model is presented in equations (12)–(13). In

this section, we convert our theoretical model into an empirical one that we can take to

data. We start by defining a vector Xi that consists of the budget constraint variables

(Wi, Ni, Gi, ti, ri, where we now allow the benefit formula variables to vary across

individuals) plus exogenous demographic covariates (e.g., age, family size, etc.). We

re-specify the model as:

Hi = Xβ
i β + [Xiλ+ g(F (Xiη + δZi))]F (Xiη + δZi) + ϵi (23)

Pi = F (Xiη + δZi) + νi (24)
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where, for sample size reasons, we remain parametric on all components except g, which we

will estimate nonparametrically using sieve methods (see below).

Equation (24) is the propensity score equation, which is a function of the budget

constraint variables, demographics, and a observable scalar Zi proxying for the costs of

participation.5 Equation (23) explicitly shows the arguments of the propensity score

function F (Xiη + δZi) but allows the treatment effect to also interact with observables Xi.

Allowing treatment effects to vary with exogenous observables is common in the

literature.6 A minor restriction for theoretical reasons is that the intercept term in the

outcome equation is specified as a function of a vector Xβ
i which excludes the benefit

formula variables Gi, ti, and ri because that intercept represents hours of work when off

welfare, and those should not be a function of the benefit parameters.

With these two functions specified, we will employ two-step estimation of the model,

with a first-stage probit estimation of equation (24) and second-stage nonlinear least

squares estimation of equation (23) using fitted values of the propensity score F from the

first stage. Consistency and asymptotic normality of two-step estimation of nonlinear

conditional mean functions with estimated first-stage parameters is demonstrated in Newey

and McFadden (1994). Standard errors are obtained by jointly bootstrapping equations

(23) and (24) as well as a wage equation using weights randomly drawn at the state-level

(Rubin, 1981; Cheng et al., 2013).

Data. The type of open-ended, cash transfer program illustrated in the theoretical

model no longer exists in the U.S. (at least for the non-elderly non-disabled). The last

program to take this form was the Aid to Families with Dependent Children (AFDC)

program, which was transformed starting in 1993 with the introduction of work

requirements, time limits, and other features that made it a different type of program than

5We will estimate the equation with a probit model. Estimating with OLS gives almost identical results.

6Xiλ will be normalized to have mean zero to allow the g̃(·) function to have an intercept. We estimate

some specifications which interact X with g.
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that illustrated above. We therefore provide an illustration of the pre-1993 version of the

AFDC program.

We use data from 1988–1992, just before the change in structure occurred. Suitable

data from that period are available from the Survey of Income and Program Participation

(SIPP), a household survey representative of the U.S. population which began in 1984 for

which a set of rolling, short (12 to 48 month) panels are available throughout the 1980s and

1990s. The SIPP is commonly used for the study of transfer programs because respondents

were interviewed three times a year and their hours of work, wage rates, and welfare

participation were collected monthly within the year, making them more accurate than the

annual retrospective time frames used in most household surveys. The SIPP questionnaire

also provided detailed questions on the receipt of transfer programs, a significant focus of

the survey reflected in its name. We use all waves of panels interviewed in the Spring of

each year from 1988–1992 (only Spring to avoid seasonal variation) and pool them into one

sample, excluding overlapping observations by including only the first interview when the

person appears to avoid dependent observations.

Eligibility for AFDC in this period required sufficiently low assets and income and, for

the most part, required that eligible families be single mothers with at least one child

under 18. The sample is therefore restricted to such families, similar to the practice in

prior AFDC research. To concentrate on the AFDC-eligible population, we restrict the

sample to those with completed education of 12 years or less, non-transfer non-labor

income less than $1,000 per month, and between the ages of 20 and 55. The resulting data

set has 3,381 observations.

The means of the variables used in our sample are shown in Appendix Table A1. The

variables include hours worked per week in the month prior to interview (H) (including

zeroes), whether the mother was on AFDC at any time in the prior month (P ), and

covariates for education, age, race, and family structure (several state characteristics are
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also used as conditioning variables).7 Thirty-seven percent of the observations were on

AFDC. For the budget constraint, variables for the hourly wage rate (W ), non-labor

income (N), and the AFDC guarantee and tax rates (G, t, and r) are needed. To address

the familiar problem of missing wages for non-workers, a traditional selection model is

estimated. Appendix Table A2 reports estimates of this equation using OLS and a

selection-bias adjustment. The OLS coefficient estimates are similar to the

selection-adjusted estimates for most of the variables, but not all. We will use the OLS

estimates for our main analysis and then estimate the model with the selection-bias

adjusted estimates as a sensitivity test.8 For N , the weekly value of non-transfer non-labor

income reported in the survey is used. AFDC guarantees and tax rates by year, state, and

family size are taken from estimates by Ziliak (2007), who used administrative caseload

data to estimate “effective” guarantees and tax rates. The effective guarantees and tax

rates in the AFDC program differ from the nominal rates because the benefit formula has

numerous exclusions and deductions which generate regions of zero tax rates and others

with positive values but below the nominal rates because of earnings-related deductions. A

long literature has used estimated effective guarantees and tax rates by regression methods,

which are more accurate approximations to the parameters actually faced by recipients.9

The mean effective tax rate on earnings across years is approximately 0.41, considerably

below the nominal rate of 1.0, and that on unearned income is approximately 0.30, also far

below 1.0.10 The analysis also controls for the guaranteed benefit in the Food Stamp

program, which was available over this period to both participants and non-participants in

7The empirical work will report some estimates separating the extensive and intensive margin of H.

8These results are similar to those presented in the text and are available upon request.

9See the references in (Ziliak, 2007) for the long prior literature.

10Both G and t have substantial cross-sectional variation, with the 1988 G for a family of 3 ranging from

$100 per month to $753 per month, and with the effective tax rate on earnings ranging from 0.12 to 0.66.

The tax rate on unearned income also has a wide range, but it was invariably insignificant in the empirical

analysis and hence is not represented in the estimates reported in the next section.
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the AFDC program. The Food Stamp guarantee is set at the national level and hence varies

only by family size and year, and consequently has relatively little variation in our sample.

Those benefits are assumed to be equivalent to cash, as most of the literature suggests.

Instruments. We require instruments Zi that proxy fixed costs of participation that

affect participation but not labor supply directly and satisfy the mean independence

conditions in equations (A1) and (A2). We use measures of what were called

administrative barriers to participation in the 1980s literature on the AFDC program,

which were error rates made by the states in the determination of eligibility. Each year,

federal auditors visited each state, recalculated eligibility for a sample of applicants, and

then computed error rates made by states in that determination. Students of the AFDC

program in the 1970s and 1980s know that there is a sizable literature, appearing mostly in

social work journals, discussing the non-random and intentional nature of these error rates

(Handler and Hollingsworth, 1971; Piliavin et al., 1979; Brodkin and Lipsky, 1983; Lipsky,

1984; Lindsey et al., 1989; Kramer, 1990). More errors were made incorrectly denying

eligibility than errors incorrectly approving eligibility. This literature showed that

administrative barriers were politically driven at the gubernatorial and state legislature

level and were aimed at keeping caseloads in the program down. States were able to

subjectively interpret the rules for what types of income to count, whether an able-bodied

spouse or partner was present, which assets to count, and other factors affecting eligibility.

Heavy paperwork requirements on applicants were imposed and states used failure to

complete the paperwork properly as a reason for denying applications (“mechanisms to

limit services...through imposing costs and inconvenience on clients” Lipsky, 1984, p. 8).

We have collected those annual, state-specific error rates from 1980 to 1992 from

published and unpublished sources. They varied widely across the states. We will use them

as instruments for AFDC participation in our SIPP data in three alternative ways. First,

we will simply use cross-state variation in the error rates and will show that the level of the

error rate in a woman’s state of residence in the SIPP data is negatively correlated with
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her probability of participating in the program. There are obvious threats to the validity of

any purely cross-sectional state-level government policy instrument, even after conditioning

on state-level characteristics. States differ in many demographic and economic

characteristics that are difficult to measure but could be correlated with these error rates,

either because both are correlated with some underlying labor-supply-related state

characteristic or because there might be direct reverse causality running from labor supply

levels in a state to administrative barriers. Consequently, we use construct two other

instruments as well. The second is based on a differences-in-differences (DD) approach.

Although there was mostly no change in government policy in the states over the period, so

a general DD approach is not possible, there was one piece of federal legislation in 1989

that altered the federal monitoring process. We find this law had differential effects on

welfare participation across states. However, we do not have an explanation for why the

federal policy affected different states differently, making it difficult to assess the a priori

validity of this source of variation. This motivates our third identification approach. We

draw on the literature arguing that political differences across the states were responsible

for the differences in error rates, and use a traditional close election regression discontinuity

(RD) as an instrument, using narrowly elected Democratic governors combined with a

Republican legislature, which we find to have resulted both in increases in administrative

barriers and reductions in AFDC participation.

All three instruments have arguable weaknesses in their a priori validity. However, we

show that all three, each using different sources of variation, nevertheless yield a MTE

curve with a similar shape. Taken together, this consistency across identification strategies

increases confidence in the results of our empirical illustration of the random coefficient

MTE framework.
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2.3 Cross-State Variation

Our instruments use information on seven measures of state AFDC error rates: the percent

of eligibility denials that were made in error, the error rate from improperly denying

requests for hearings and appeals, the percent of cases dismissed for eligibility reasons

other than the grant amount, the overall percent of applications denied, the percent of

applications denied for procedural reasons (usually interpreted as not complying with

paperwork), the percent of cases resulting in an incorrect overpayment or underpayment,

and the percent of cases resulting in an underpayment. There are also error rates and

percents of actions related to income, assets, or employment, but these are directly or

indirectly related to the applicant’s labor supply and earnings level and hence are not used.

The means and distributional statistics of the seven administrative barrier variables

are shown in Table 1.11 While the means of one of the variables is less than 1 percent,

others range from 2 percent to 24 percent. The cross-state variation is also wide, with some

states making underpayment errors in over 10 percent of cases, procedural denial rates of

almost 35 percent, and overall denial rates of almost 50 percent.

Initial analyses of the seven barrier variables revealed them to be highly correlated,

with correlations generally in the range of 0.80. This feature makes it difficult to identify

their separate effects and signals that they likely represent packages of similar behaviors by

states. We consequently interpret the seven as noisy indicators of a single underlying index

and construct the textbook inverse variance weighted average of the seven, which is the

lowest variance estimate of a true single variable in the presence of measures with

independent mean-zero measurement errors. The summary statistics of this barrier index

are reported in the last row of Table 1.12

11The administrative variables bounce around from year to year for each state because the federal government

only took a random sample of records each year. To reduce noise, we compute the average of each barrier

for each state over the 1980–1992 period.

12The logs of the barrier variables performed better in our analysis than the absolute values. We report the
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To generate first-stage estimates of the AFDC participation propensity score, we

match the state of residence of each observation in our SIPP data to the state

administrative barrier index and, for our first, cross-state instrument, estimate probit

models for the probability of AFDC participation as a function of the index and other

control variables. These controls include the four budget constraint variables which must

be included for consistency with the theoretical model. Table 2 reports the estimated

coefficients on the barrier index.13 The first specification features the barrier index alone,

while second specification includes an interaction with non-labor income, which we found

to be highly predictive of AFDC participation. A higher level of administrative barrier in a

woman’s state of residence reduces the likelihood that she is on AFDC, and the effect is

larger for women with higher non-labor income.

The F-statistics reported in the bottom of Table 2 provide information on the strength

of the instrument. The uninteracted specification has an OLS-estimated F statistic of over

11, meeting the conventional Stock and Yogo (2005) rule of 10 aimed at keeping bias and

coverage at reasonable levels, while the specification with the interaction has a lower OLS

F statistic.14 But these statistics are not relevant to the MTE model which estimates a

continuous treatment effect. Such a model requires a measure of the instrument’s strength

at each point along the continuous MTE curve. Such statistics have not been developed in

the weak IV literature, which has focused on models with a single, constant treatment

effect (as have Anderson-Rubin and related alternative models). To illustrate the relevance

of this issue, we estimate what we term “pseudo-F statistics” for different discrete ranges of

the propensity score distribution, first for quartiles and then for terciles. As the results at

the bottom of Table 2 show, the instruments are stronger in the central range of the

propensity score distribution and very weak in the upper and lower tails. This pattern is

inverse variance weighted mean of the logarithms of the seven barrier variables in the last row of the table.

13Appendix Table A3 reports estimates for all coefficients.

14The Stock-Yogo F statistics for two instruments range from 12 to 20.
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what one should expect for a standard S-shaped cdf curve, where the slope is greatest in

the middle and flattest in the tails. We recommend future research on methods for testing

for weak instruments in continuous S-shape propensity score curves, but for present

purposes we will simply restrict our estimates of the MTE curve to the approximate region

0.25 to 0.66 (the union of the second quartile and the middle tercile) where the instruments

are the strongest. The F statistics for that range are 10 and 17 for the two specifications.15

Results. Estimating equation (23) using the fitted values of the participation

probabilities for F yields estimates of β, λ, and the parameters of the g function.16 The g

function is estimated with conventional cubic splines, hence

g(F ) = g0 +
J∑

j=1

gj max(0, F − πj)
3, where the πj are J preset spline knots. For a given J ,

the knots will are chosen to be regularly spaced within the (0.25, 0.66) range. The

estimation starts with J = 3 and then increase the number until a fit measure is optimized.

Fit is assessed with a generalized cross-validation statistic (GCV). Given the well-known

tendency of polynomials to reach implausible values in the tails of the function and beyond

the range of the data, natural splines are typically used, which constrain the function to be

linear before the first knot and beyond the last knot (Hastie et al., 2009). Imposing

linearity on the function in those two intervals requires modifying the spline functions to

accommodate this feature; the exact spline functions for a five-knot spline are shown in

15We note that Angrist and Kolesar (2024) have recently noted that the Stock-Yogo analysis is motivated

by the case of many instruments, and that specifications with a low number of instruments do not suffer

from the same problem, as well as noting that Stock and Yogo are concerned with maximum possible bias,

which occurs when the correlation coefficient measuring the degree of endogeneity is ±1. Angrist and

Kolesar show that that coefficient can be estimated by comparing OLS and IV estimates, but we cannot

estimate that coefficient in our application because our “OLS” equation is equation (1) and would have to

be estimated allowing a distribution of αi. We have generated some approximate estimates of an average

coefficient which suggest that it may be quite low. These results are available upon request.

16We use the second specification in Table 2 but the results are very similar for the first specification.
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Appendix B.17

To illustrate our choice of the number of knots, Figure 1 shows the estimated MTE

curves in the (0.25, 0.66) range with 90 percent confidence intervals for three-to-six knots.18

The 3-knot and 4-knot specifications show monotonic MTE curves but they turn

nonmonotonic with 5 knots and stay nonmonotonic at 6 knots. The minimal GCV for all

four is at 5 knots, although the specification for 6 knots is only slightly higher. We use the

specification with 5 knots for the rest of the analysis.

Table 3 reports the full set of parameter estimates for three versions of the hours

equation for the 5-knot specification. The natural spline coefficients are not easily

interpretable and instead are shown graphically in Figure 1. Column (1) has only the

budget constraint variables in the λ vector, which are not very strong predictors of hours,

implying that we do not detect strong interactions of participation with those variables.

The wage itself does have strong positive effects on hours, however, as indicated by its β

coefficient. Column (2) tests a set of additional interactions of the participation probability

with the budget constraint variables, but no effects are found there. Column (3) adds Age

and Black to the to the λ vector, which are partially significant and improved the GCV

measure. In unreported results, we tested additional X variables in the λ vector but these

were either insignificant or had no impact on the GCV metric. The spline coefficients in

column (3) are those used in Figure 1. The estimates in columns (1) and (2) yield similar

MTE curves.

We return to Figure 1 for substantive interpretation. The marginal labor supply

responses are nonmonotonic and U-shaped, starting off at F = 0.25 slightly including zero

in the confidence interval but then growing in (negative) size as participation increases

17Consistency of sieve methods is discussed by Chen (2007).

18The MTE function is, as noted previously, the derivative of the hours equation with respect to the propen-

sity score. Confidence intervals are constructed by jointly bootstrapping the estimating equations using

weights randomly drawn at the state-level to allow for state-specific clustering. All MTE curves are eval-

uated at the means of the other variables in the equation.
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with confidence intervals excluding zero. The marginal response peaks at a participation

probability about 0.36, when it reaches a labor supply disincentive of those on the margin

of approximately -21 hours per week. It then declines, becoming insignificantly different

from 0 at approximately F = 0.42. The point estimate approaches zero as participation

rises further but remains insignificantly different from 0 for all higher participation levels.

Thus the marginal labor supply disincentive of policies which increased participation in the

AFDC program in the late 1980s and early 1990s was zero at many margins but

non-trivially negative at other margins, depending on the initial participation rate at the

time any expansion would have begun.

Some insight into the mechanics behind the U-shaped pattern of responses we have

found can be gained by examining marginal responses between full-time work, part-time

work, and non-work. Figure 2 shows the results of estimating the hours worked equation by

successively replacing the dependent variable for H with binary variables for not working,

working part-time, and working full-time. The leftmost panel shows that the probability of

non-work rises sharply as participation goes from 0.25 to 0.35, the same range where the

MTE for average hours falls the most. The middle panel shows that the MTE for part-time

work actually starts off at a positive level (albeit small), implying an increase in part-time

work that can only come from full-time workers reducing labor supply to the part-time

level. The part-time MTE becomes less positive as participation increases and eventually

becomes zero or negative, implying that some part-timers move at that point to non-work.

But the right panel shows that the MTE for full-time work is large and negative in the 0.25

to 0.35 participation rate range implying, when combined with the other panels, that a

large part of the reduction in labor supply over that range is from full-time workers moving

to part-time but mostly to non-work upon participation. Eventually, however, after

participation rises high enough, movements out of full-time work fall to zero. Thus the

decline in the labor supply reductions in average hours when participation rates rise
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sufficiently high reflects a decline in movements out of full-time work.19

2.4 Difference in Difference Approach

As noted previously, there were no significant legislative changes at the state or federal

level regarding state error rates or federal monitoring of those rates over most of our

observation period. However, an exception occurred in 1989, when Congress passed new

legislation, the Omnibus Budget Reconciliation Act, which modified the quality control

inspection program that the federal government used to assess state error rates (U.S. House

of Representatives, Committee on Ways and Means, 1994, Section 10). The legislation was

motivated by a concern that states were continuing to make errors in their program

eligibility assessments, and tightened up the federal monitoring system imposed on the

states. The full implementation of the Act started in 1991 and was completed in 1992. We

use this legislation in a difference-in-difference exercise which examines whether error rates

in the states changed significantly in the 1991–1992 period compared to previous levels,

and whether it did so differentially across states. We then use that cross-state differential

change in error rates as the instrument for estimating our MTE curve. The disadvantage of

this method is that the legislation was national in scope and there is no available evidence

for why error rates changed differently across states. The advantage of this method is that

it uses within-state variation in error rates over time rather than the cross-state variation

used in the last section, and these are different sources of variation which need not have

any relationship to each other.

We implement this method by computing the mean barrier index for each state over

19A separate analysis shows that those on the margin of participation at low participation rates have higher

than average wage rates, are less likely to be black, are older, and have fewer young children, all of which

are correlated with higher hours of work (and hence are likely to be starting off at full time work). Those

on the margin at higher participation rates have the opposite characteristics, and are more likely to not

work, at which point further reductions are not possible.

22



the 1988–1990 period and then computing the residual of the actual 1991 and 1992 barrier

indices for each at that mean. The residuals have a wide range across the states, with a

standard deviation almost equal to its mean. Table 4 shows the first-stage estimates for a

standard DD specification, including variables for the state mean barrier index, a binary

indicator for the post 1991–1992 period, and an interaction term for the post variable and

the state residual barrier index, with the latter constituting the instrument.20 The

estimated coefficient is negative in sign, indicating that those states with above-average

residuals had larger declines (or smaller increases) in AFDC participation in the 1991–1992

period, and states with below-average residuals had smaller declines (or larger increases) in

participation. Experiments with pseudo-F statistics in different ranges of the propensity

score again showed that the range from 0.25 to 0.66 had the largest statistics, which are

slightly above 8 for this instrument. While below 10, we note again that Angrist and

Kolesar (2024) found that just identified models need only have correlation coefficients for

endogeneity only below about 0.50 for robust inference, and our explorations of the

possible magnitude of that coefficient indicates its value to be possibly quite low.

The estimated MTE curve from the hours worked equation using this instrument in

the hours equation is shown in Figure 3, using a 5-knot natural spline and the specification

in column (3) of Table 3. The shape of the curve is remarkably similar to that using the

cross-state instrument: U-shaped with confidence intervals bounded away from zero in the

0.26 to 0.50 range, and with a peak (negative) work disincentive of -28 hours per week at

approximately a 0.37 participation rate, which is slightly larger than the peak negative for

the cross-state instrument. Despite the different source of variation used with this

instrument, the substantive result is the same as for the first instrument, that marginal

work disincentives are small or insignificantly different from zero at many margins of

participation but substantial at other margins.

20Estimates for all parameters are available in Appendix Table A4.
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2.5 Close Election RD Approach

For our third instrument, we note that our initial discussion of the literature on state error

rates in the 1980s and early 1990s argued that those error rates were a result of political

differences across the states. But, as is widely recognized, political differences themselves

may not be valid instruments because they are likely correlated with state demographics

and therefore possibly with the labor market engagement levels of low income families in

the state. We draw upon the literature on regression discontinuity designs in political

economy research which use close elections as a plausibly exogenous source of political

party governance (see e.g., Lee et al., 2004; Lee, 2008, and the large subsequent literature).

The argument in this approach is that states where a party is elected only narrowly is close

in unobserved ways to states where parties lose narrowly, and therefore a comparison of the

impact of which party is elected in a close election has a better chance of being exogenous

than merely political party control itself, which could easily be correlated with state

demographics and labor market variables.

We supplement our data set with state-level political variables we collected for the

time period from 1988–1992. First, we gathered data on the party affiliation of the

governor of each state, and we determine whether that governor was a Democrat elected in

a close election, which we define as having been elected with at most 60% of the vote. We

control for the Democratic share of the vote as the running variable. Using the Republican

party instead of the Democratic party yields similar results. We also gather information on

the political makeup of the state legislature, which we hypothesize could affect the ability

of a narrowly elected governors to enact policies of their liking and, in particular, to enact

policies concerning error rates in their state’s welfare programs. We collect data on

whether the legislature is entirely Republican (both chambers) or whether it is split, with

one chamber controlled by Democrats and one controlled by Republicans (a “split”

legislature).21 We test whether the impact of a Democrat governor who has been elected in

21Nebraska has a unicameral state legislature, so splits are only possible if that chamber is equally divided.
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a close election varies with these legislative party control variables.

The two columns of Table 5 show the results of the relevant first stage estimation.22

The first column tests whether a narrowly elected Democratic governor affects the level of

the barrier index in the state. Preliminary testing revealed it to have little impact on its

own but to have a significant impact depending on whether the legislature was fully

controlled by Republicans. We suspect that in states where the legislature was fully

controlled by Republicans and a Democratic governor was elected only narrowly—hence

was weak politically—the legislature was able to enact legislation of their liking over the

veto threat of the governor. We use the interacted variable as the instrument because of its

a priori plausibility. The second column shows the first-stage AFDC participation probit,

showing that the same interacted variable has a negative effect on that participation,

consistent with the higher barrier index effect in the first column. The F-statistic in the

(0.25, 0.66) region of the propensity score is slightly above 9, marginally greater than the

one from the DD analysis presented in the prior section. The instrument is again weak in

higher and lower ranges of the propensity score.

Figure 4 shows the estimated MTE curves using this close election variable as an

instrument using a 5-knot natural spline and the Hours equation specification in column

(3) of Table 3, again only for the (0.25, 0.66) range of the propensity score. The MTE

curve has the same shape as obtained with the prior two instruments: U-shaped with

increasingly negative marginal work incentives as the participation rate rises above 0.25

but peaking at a participation rate of 0.37 where the marginal disincentive is -33 hours per

week, and then falling in absolute value as the caseload expands. The confidence interval

includes zero at a participation rate of 0.53 or above.

22Appendix Table A5 contains estimates for all variables.
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3 Summary

This paper has provided an illustration of how marginal treatment effect models can

be set up in an intuitive and appealing way as a random coefficients model. Nonparametric

estimation of the coefficient on the propensity score can be conducted using a variety of

methods from in the literature; our empirical illustration uses sieve methods with natural

cubic splines. We also provide an application to the marginal labor supply effects resulting

from expansions and contractions of a welfare program, moving beyond the constant

treatment effects in the bulk of the literature. We provide an empirical illustration to the

historic AFDC program, the last program in the U.S. to take the classic, open-ended cash

negative-income-tax form. Our analysis shows U-shaped marginal work disincentive curves,

with the disincentive becoming more negative as the program expands from low

participation rates to modest participation rates, then becoming less negative as the

program expands further.

We suggest that future research on marginal treatment effects consider using the

random coefficient model for the interpretative advantages we have outlined and for the

clarity of identification conditions it offers. For research on welfare programs in particular,

we suggest that the model be considered for current and more recent programs. Our

finding for the pre-1993 AFDC program that marginal responses greatly vary depending on

the scale of the program and who is and who is not on the margin may apply to welfare

programs in general as well as to outcomes other than labor supply. Our analysis also

reveals a gap in the weak IV literature, which has only considered constant treatment effect

models. For continuous treatment effect models, particularly those with propensity score

curves which necessarily flatten out at high and low values of the score, the strength of the

instrument is likely to vary over the range of the score. New research on this issue is

needed to provide confidence in the results of MTE models.
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Tables and Figures

Table 1: Administrative Barrier Variables

Mean Std. Dev. Min Max

Individual Barrier Variables
Pct. ineligible in error 1.7 0.9 0.3 4.7
Pct. hearings and appeals improperly denied 1.8 1.2 0.4 5.8
Pct. cases elig. denied for non-grant reasons 0.2 0.1 0.0 0.4
Pct. applications denied 26.2 9.6 5.3 47.8
Pct. applications denied for procedural reasons 13.8 7.8 1.3 34.6
Error rate in payment determination 4.2 1.3 2.2 7.3
Error rate resulting in underpayment 2.8 1.5 1.6 10.2

Weighted Average Barrier Index
Inverse Variance Weighted Average 0.3 0.1 0.1 0.5
Inverse Variance Log Weighted Average 1.3 0.2 0.8 1.7

Notes: This table summarizes different administrative barriers for enrollment into the AFDC pro-
gram from 1980–1992. These measures are obtained from Quarterly Public Assistance Statistics and
unpublished data from the U.S. Department of Health and Human Services. Values are averages over
all years for each state. “Inverse Variance Weighted Average” is the inverse variance weighted average
of the individual barrier variables in levels. “Inverse Variance Log Weighted Average” is the inverse
variance weighted average of the individual barrier variables in logs.
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Table 2: Estimated Impact of Instruments on AFDC Participation

(1) (2)
Barrier Index -0.593*** -0.482**

(0.208) (0.213)
Barrier Index×N -0.007***

(0.002)

Budget Constraint ✓ ✓
Demographic Controls ✓ ✓
State Controls ✓ ✓
Region FEs ✓ ✓
OLS F-Stat for Instruments 11.13 6.85

Pseudo F-Statistic by Part. Prob. Range

0.00–0.25 3.16 1.94
0.25–0.50 10.96 15.94
0.50–0.75 0.38 3.13
0.75–1.00 0.91 0.88

0.00–0.33 4.24 4.94
0.33–0.66 9.09 14.62
0.66–1.00 2.07 2.34

0.25–0.66 10.18 17.62
Observations 3,381 3,381

Notes: ∗ ∗ ∗p < 0.01; ∗ ∗ p < 0.05; ∗p < 0.1. This table reports estimates of a probit model for
AFDC participation onto a series of individual and state characteristics. The “Barrier Index” is the
inverse variance weighted average of the log of the individual administrative barrier variables in Table
1. “Budget Constraint” variables include log Ŵ , logN + 10, logG, and log Ŵ (1− t). “Demographic
Controls” include age, black, family size, the number of children under 6, and the food stamp guar-
antee. “State Controls” include the unemployment rate, share of the state that is urban, share of the
state population that is black, and the per-capita income in the state. Standard errors are in paren-
thesis and obtained using a weighted bootstrap procedure with 1,000 iid exponential weights drawn at
the state-level. All parameter estimates are available in Appendix Table A3. The second panel reports
F-statistics from an OLS version of the probit model and within different participation probability
ranges based on the probit estimates. To calculate the F-statistic within a specific range of F̂ , define
RSS(q) as the residual sum of squares, equal to the sum of [P − F̂ ]2 taken over all observations in the
range. The F-statistic is calculated as (1) the difference in RSS(q) for the restricted model excluding
the instruments and the unrestricted model RSS(q) including the instruments divided by the degrees
of freedom, divided by (2) the residual variance computed over all observations in the sample, using
F̂ from the restricted model.
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Table 3: Estimates of Hours Equation with Five-Knot Spline

(1) (2) (3)
ggg

Constant 182.172*** 177.437*** 157.417**
(67.429) (67.264) (68.634)

F̂ -1,634.866*** -1,574.373*** -1,495.355***
(508.930) (516.896) (509.494)

S3 41,338.290*** 39,272.001*** 38,339.154***
(13,775.924) (13,898.910) (13,808.760)

S4 -57,133.232*** -53,988.278*** -52,966.936***
(19,334.775) (19,463.784) (19,400.364)

S5 16,122.761*** 14,906.941*** 14,906.921***
(5,765.008) (5,760.739) (5,801.959)

λλλ

log Ŵ -8.056 41.269 -16.921
(20.039) (48.684) (20.383)

N 0.304** 0.303 0.340**
(0.120) (0.249) (0.133)

logG -4.511 -18.052 -5.550
(7.660) (16.089) (8.425)

log Ŵ (1− t) -10.391 -7.961 -15.558
(9.084) (29.306) (10.663)

Age 0.841***
(0.302)

Black -0.241
(3.801)

Interactions

log Ŵ × F̂ -54.193
(53.784)

N × F̂ 0.043
(0.348)

logG× F̂ 15.473
(16.386)

log Ŵ (1− t)× F̂ -11.983
(40.297)

Notes: ∗ ∗ ∗p < 0.01; ∗ ∗ p < 0.05; ∗p < 0.1. This table reports estimates for the hours equation. The
first stage is the probit model for AFDC participation in column (2) of Table 2. Variables under the
λλλ heading are expressed as deviations from their respective means. Standard errors are in parenthesis
and obtained using a weighted bootstrap procedure with 1,000 iid exponential weights drawn at the
state-level. Table continues onto the next page.
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Table 3: Estimates of Hours Equation with Five-Knot Spline (continued)

(1) (2) (3)
βββ

log Ŵ 40.047*** 37.680*** 49.904***
(7.987) (9.182) (11.383)

logN + 10 -2.720*** -2.191** -2.835***
(0.892) (0.924) (0.936)

Age -0.267** -0.298** -0.595***
(0.115) (0.127) (0.208)

Black 0.143 0.010 0.359
(0.839) (1.026) (1.956)

Family Size -0.626 -0.413 -0.845
(0.583) (0.639) (0.571)

Number of Children < 6 -2.379*** -2.797*** -2.581***
(0.811) (0.893) (0.902)

Food Stamp Guarantee -25.889 -32.118* -27.344
(16.266) (18.390) (17.537)

State Unemployment Rate -0.359 -0.386 -0.384
(0.227) (0.248) (0.239)

State Pct. Urban -0.295 -0.329*** -0.319
(0.083) (0.091) (0.093)

State Pct. Black -4.299*** -5.156 -4.195
(4.766) (4.872) (5.126)

State Per-Capita Income 0.431 0.584* 0.420***
(0.320) (0.355) (0.331)

Northeast -14.465*** -15.465*** -16.398***
(2.838) (3.061) (3.461)

Midwest -4.860* -5.140** -5.940**
(2.279) (2.503) (2.616)

West -6.021* -5.896* -7.286**
(3.131) (3.324) (3.629)

Constant 18.490 25.911 18.212***
(20.086) (21.233) (21.560)

GCV 318.08 318.47 317.25
Observations 3,381 3,381 3,381

Notes: ∗ ∗ ∗p < 0.01; ∗ ∗ p < 0.05; ∗p < 0.1. This table reports estimates for the hours equation. The
first stage is the probit model for AFDC participation in column (2) of Table 2. Variables under the
λλλ heading are expressed as deviations from their respective means. Standard errors are in parenthesis
and obtained using a weighted bootstrap procedure with 1,000 iid exponential weights drawn at the
state-level.
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Table 4: First Stage Estimates Using 1989 Law Change

(1)
State Mean Barrier Index -0.164

(0.214)
1991–1992 0.093

(0.072)
1991–1992 × State Barrier Index Residual -0.596***

(0.201)

Budget Constraint ✓
Demographic Controls ✓
State Controls
Region FEs ✓
OLS F-Stat for Instruments 6.28

Pseudo F-Stat by Part. Prob. Range

0.00–0.25 -0.95
0.25–0.66 8.19
0.66–1.00 -0.44
Observations 3,381

Notes: ∗ ∗ ∗p < 0.01; ∗ ∗ p < 0.05; ∗p < 0.1. This table reports estimates of a probit model for
AFDC participation onto a series of individual and state characteristics. The “Barrier Index” is the
inverse variance weighted average of the log of the individual administrative barrier variables in Table
1. “State Mean Barrier Index” is the average of the value of the barrier index within a state from
1988–1992. “State Barrier Index Residual” is defined as the difference between the average of the state
barrier index from 1988–1990 and the value of the barrier index for the state in 1991 and 1992. “Budget
Constraint” variables include log Ŵ , logN + 10, logG, and log Ŵ (1 − t). “Demographic Controls”
include age, black, family size, the number of children under 6, and the food stamp guarantee. “State
Controls” include the unemployment rate, share of the state that is urban, share of the state population
that is black, and the per-capita income in the state. Standard errors are in parenthesis and obtained
using a weighted bootstrap procedure with 1,000 iid exponential weights drawn at the state-level.
All parameter estimates are available in Appendix Table A4. The second panel reports F-statistics
from an OLS version of the probit model and within different participation probability ranges based
on the probit estimates. To calculate the F-statistic within a specific range of F̂ , define RSS(q) as
the residual sum of squares, equal to the sum of [P − F̂ ]2 taken over all observations in the range.
The F-statistic is calculated as (1) the difference in RSS(q) for the restricted model excluding the
instruments and the unrestricted model RSS(q) including the instruments divided by the degrees of
freedom, divided by (2) the residual variance computed over all observations in the sample, using F̂
from the restricted model.
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Table 5: First Stage Estimates Using Close Election RD

Barrier Index OLS AFDC Probit
Elections:
Dem Gov Vote Share -0.212 0.517*

(0.162) (0.302)
Dem Share Under 60% -0.066* 0.035

(0.035) (0.079)
State Legislature:
Republican 0.056 0.100

(0.064) (0.148)
Split 0.236*** -0.136

(0.044) (0.094)
Interactions:
Republican × Dem Share Under 60% 0.180** -0.814***

(0.076) (0.171)

Budget Constraint ✓ ✓
Demographic Controls ✓ ✓
State Controls
Region FEs ✓ ✓
OLS F-Stat for Instruments 13.40

Pseudo F-Stat by Part. Prob. Range

0.00–0.25 4.60
0.25–0.66 9.10
0.66–1.00 1.70
Observations 3,152 3,152

Notes: ∗ ∗ ∗p < 0.01; ∗ ∗ p < 0.05; ∗p < 0.1.This table reports estimates of an OLS regression of the barrier index onto
a series of individual and state characteristics and a probit model for AFDC participation using those same variables.
“Dem Gov Vote Share” measures the share of the vote the Democratic candidate for governor received in the last
election. “Dem Share Under 60%” is an indicator for whether the winning democratic candidate’s vote share was under
60%. “State Legislature” variables are indicators for the partisan control of the state legislature. Observations for states
that aggregated by the SIPP or had outlier values for the political variables are omitted (i.e., Washington DC, Colorado,
Maine, Vermont, Iowa, North Dakota, South Dakota, Alaska, Idaho, Montana, and Wyoming). “Budget Constraint”

variables include log Ŵ , logN + 10, logG, and log Ŵ (1 − t). “Demographic Controls” include age, black, family size,
the number of children under 6, and the food stamp guarantee. “State Controls” include the unemployment rate, share
of the state that is urban, share of the state population that is black, and the per-capita income in the state. Standard
errors are in parenthesis and obtained using a weighted bootstrap procedure with 1,000 iid exponential weights drawn at
the state-level. All parameter estimates are available in Appendix Table A5. The second panel reports F-statistics from
an OLS version of the probit model and within different participation probability ranges based on the probit estimates.
To calculate the F-statistic within a specific range of F̂ , define RSS(q) as the residual sum of squares, equal to the sum

of [P − F̂ ]2 taken over all observations in the range. The F-statistic is calculated as (1) the difference in RSS(q) for
the restricted model excluding the instruments and the unrestricted model RSS(q) including the instruments divided

by the degrees of freedom, divided by (2) the residual variance computed over all observations in the sample, using F̂
from the restricted model.
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Figure 1: Marginal Labor Supply Curves for Different Natural Cubic Splines
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Notes: This figure plots the marginal treatment effect curves using different cubic spline specifications.
All specifications use a first stage probit model with the inverse variance weighted log of the AFDC
administrative barriers and interactions with N . The dashed lines denote 90 percent confidence intervals
that are generated from a weighted bootstrap procedure with 1,000 iid exponential weights drawn at the
state-level.
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Figure 2: Marginal Labor Supply Curves for Different Types of Workers
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Notes: This figure plots the marginal treatment effect curves for non-workers, part-time, and full-time
workers using a 5-knot cubic spline specification. The first stage probit model uses the inverse variance
weighted log of the AFDC administrative barriers index and interactions with N . The dashed lines denote
90 percent confidence intervals that are generated from a weighted bootstrap procedure with 1,000 iid
exponential weights drawn at the state-level.
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Figure 3: Marginal Labor Supply Curves Using 1989 Law Change Instrument

−40

−20

0

20

0.25 0.35 0.45 0.55 0.65
F

∂H
/∂

F

Notes: This figure plots the marginal treatment effect curves using a 5-knot cubic spline specification. The
first stage probit uses the 1989 law change as the instrument. The dashed lines denote 90 percent confidence
intervals that are generated from a weighted bootstrap procedure with 1,000 iid exponential weights drawn
at the state-level.
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Figure 4: Marginal Labor Supply Curves Using Close Election RD
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Notes: This figure plots the marginal treatment effect curves using a 5-knot cubic spline specification. The
first stage probit uses the close election regression discontinuity design. The dashed lines denote 90 percent
confidence intervals that are generated from a weighted bootstrap procedure with 1,000 iid exponential
weights drawn at the state-level.
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Appendix A Additional Tables and Figures

Table A1: Means of Variables Used in the Analysis

Full Sample P=1 P=0

Weekly H 21.38 4.48 31.14
P 0.37 1.00 0.00

log Ŵ 1.78 1.74 1.81
logN + 10 2.97 2.58 3.19
logG -2.49 -2.38 -2.55

log Ŵ (1− t) 1.27 1.22 1.30
Age 32.48 30.27 33.75
Black 0.34 0.41 0.30
Education 10.89 10.49 11.13
Family size 3.09 3.37 2.94
No. Children < 6 0.79 1.14 0.58
Food Stamp Guarantee 0.78 0.78 0.78
Unemployment rate 6.35 6.44 6.30
State Percent Services 27.67 27.94 27.52
State Percent Manufacturing 15.39 15.31 15.43
State Percent Urban 76.26 77.49 75.55
Northeast 0.28 0.28 0.28
Midwest 0.27 0.27 0.26
West 0.22 0.25 0.20
Observations 3,381 1,238 2,143

Notes: This table reports the means of variables used in our analysis. The sample is composed of
single mothers aged 25–55 with a high school education or less with total assets less than $1,500 a
week and non-transferable non-labor income less than $1,000 a week drawn from 1988–1992 SIPP
interviews. All dollar-denominated variables are in 1990 PCE dollars.
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Table A2: Log Hourly Wage Equation Estimates

(1) (2)
OLS Selection-Bias Adjusted

Age 0.014*** 0.007***
(0.001) (0.002)

Education 0.047*** 0.041***
(0.008) (0.008)

Black -0.092*** 0.011***
(0.034) (0.038)

Northeast 0.206*** 0.268***
(0.051) (0.048)

Midwest 0.087** 0.074***
(0.042) (0.042)

West 0.120* 0.184***
(0.064) (0.047)

State Pct. Services 0.016** 0.018***
(0.007) (0.006)

State Pct. Manufacturing 0.004 0.008***
(0.004) (0.004)

State Pct. Urban 0.003 0.004***
(0.002) (0.001)

Observations 1,818 3,258

Notes: ∗ ∗ ∗p < 0.01; ∗ ∗ p < 0.05; ∗p < 0.1. This table reports estimates of the log hourly wage
equation. The first column uses OLS, while the second uses the selection bias adjustment using a
Heckman lambda based on a first stage probit which includes all variables listed in the table plus
family size, the number of children under 6, the food stamp guarantee, the state unemployment rate,
N , G, and t. Education is measured as the highest grade completed. Standard errors are in parenthesis
and obtained using a weighted bootstrap procedure with 1,000 iid exponential weights drawn at the
state-level.
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Table A3: Estimated Impact of Instruments on AFDC Participation—Detailed Estimates

(1) (2)

log Ŵ -3.703*** -3.686***
(0.703) (0.712)

logN + 10 -0.436*** -0.071
(0.031) (0.090)

logG 1.240*** 1.244***
(0.206) (0.203)

log Ŵ (1− t) 1.602*** 1.590***
(0.396) (0.393)

Age 0.012 0.012
(0.009) (0.009)

Black 0.125 0.135
(0.094) (0.093)

Family Size -0.114*** -0.109**
(0.043) (0.043)

Number of Children < 6 0.303*** 0.303***
(0.039) (0.040)

Food Stamp Guarantee 3.868*** 3.753***
(1.367) (1.368)

State Unemployment Rate 0.022 0.026
(0.018) (0.019)

Notes: ∗ ∗ ∗p < 0.01; ∗ ∗ p < 0.05; ∗p < 0.1. This table reports estimates of a probit model for
AFDC participation onto a series of individual and state characteristics. The “Barrier Index” is the
inverse variance weighted average of the log of the individual administrative barrier variables in Table
1. Standard errors are in parenthesis and obtained using a weighted bootstrap procedure with 1,000
iid exponential weights drawn at the state-level. The second panel reports F-statistics from an OLS
version of the probit model and within different participation probability ranges based on the probit
estimates. To calculate the F-statistic within a specific range of F̂ , define RSS(q) as the residual sum
of squares, equal to the sum of [P − F̂ ]2 taken over all observations in the range. The F-statistic is
calculated as (1) the difference in RSS(q) for the restricted model excluding the instruments and the
unrestricted model RSS(q) including the instruments divided by the degrees of freedom, divided by
(2) the residual variance computed over all observations in the sample, using F̂ from the restricted
model. Table continues onto next page.
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Table A3: Estimated Impact of Instruments on AFDC Participation—Detailed Estimates
(continued)

(1) (2)
State Pct. Urban 0.023*** 0.023***

(0.005) (0.005)
State Pct. Black 0.190 0.147

(0.400) (0.396)
State Per-Capita Income -0.106*** -0.099***

(0.029) (0.030)

Northeast 0.634*** 0.602***
(0.234) (0.233)

Midwest 0.184 0.169
(0.203) (0.199)

West -0.024 -0.036
(0.242) (0.240)

Barrier Index -0.593*** -0.482**
(0.208) (0.213)

Barrier Index ×N -0.007***
(0.002)

OLS F-Stat for Instruments 11.13 6.85

Pseudo F-Statistic by Part. Prob. Range

0.00–0.25 3.16 1.94
0.25–0.50 10.96 15.94
0.50–0.75 0.38 3.13
0.75–1.00 0.91 0.88

0.00–0.33 4.24 4.94
0.33–0.66 9.09 14.62
0.66–1.00 2.07 2.34

0.25–0.66 10.18 17.62
Observations 3,381 3,381

Notes: ∗ ∗ ∗p < 0.01; ∗ ∗ p < 0.05; ∗p < 0.1. This table reports estimates of a probit model for AFDC participation
onto a series of individual and state characteristics. The “Barrier Index” is the inverse variance weighted average of
the log of the individual administrative barrier variables in Table 1. Standard errors are in parenthesis and obtained
using a weighted bootstrap procedure with 1,000 iid exponential weights drawn at the state-level. The second panel
reports F-statistics from an OLS version of the probit model and within different participation probability ranges based
on the probit estimates. To calculate the F-statistic within a specific range of F̂ , define RSS(q) as the residual sum of

squares, equal to the sum of [P − F̂ ]2 taken over all observations in the range. The F-statistic is calculated as (1) the
difference in RSS(q) for the restricted model excluding the instruments and the unrestricted model RSS(q) including
the instruments divided by the degrees of freedom, divided by (2) the residual variance computed over all observations

in the sample, using F̂ from the restricted model.

.
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Table A4: First Stage Estimates Using 1989 Law Change—Detailed Estimates

(1)

log Ŵ -2.958***
(0.634)

logN + 10 -0.441***
(0.031)

logG 0.928***
(0.190)

log Ŵ (1− t) 1.177***
(0.427)

Age 0.009
(0.007)

Black 0.147*
(0.080)

Family Size -0.057
(0.039)

Number of Children < 6 0.302***
(0.039)

Food Stamp Guarantee 4.003***
(1.399)

Notes: ∗ ∗ ∗p < 0.01; ∗ ∗ p < 0.05; ∗p < 0.1. This table reports estimates of a probit model for
AFDC participation onto a series of individual and state characteristics. The “Barrier Index” is the
inverse variance weighted average of the log of the individual administrative barrier variables in Table
1. “State Mean Barrier Index” is the average of the value of the barrier index within a state from
1988–1992. “State Barrier Index Residual” is defined as the difference between the average of the
state barrier index from 1988–1990 and the value of the barrier index for the state in 1991 and 1992.
Standard errors are in parenthesis and obtained using a weighted bootstrap procedure with 1,000
iid exponential weights drawn at the state-level. The second panel reports F-statistics from an OLS
version of the probit model and within different participation probability ranges based on the probit
estimates. To calculate the F-statistic within a specific range of F̂ , define RSS(q) as the residual sum
of squares, equal to the sum of [P − F̂ ]2 taken over all observations in the range. The F-statistic is
calculated as (1) the difference in RSS(q) for the restricted model excluding the instruments and the
unrestricted model RSS(q) including the instruments divided by the degrees of freedom, divided by
(2) the residual variance computed over all observations in the sample, using F̂ from the restricted
model. Table continues onto next page.
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Table A4: First Stage Estimates Using 1989 Law Change—Detailed Estimates (continued)

(1)
Northeast 0.303

(0.214)
Midwest 0.111

(0.189)
West 0.094

(0.217)

State Mean Barrier Index -0.164
(0.214)

1991–1992 0.093
(0.072)

1991–1992 × State Barrier Index Residual -0.596***
(0.201)

OLS F-Stat for Instruments 6.28

Pseudo F-Stat by Part. Prob. Range

0.00–0.25 -0.95
0.25–0.66 8.19
0.66–1.00 -0.44
Observations 3,381

Notes: ∗ ∗ ∗p < 0.01; ∗ ∗ p < 0.05; ∗p < 0.1. This table reports estimates of a probit model for
AFDC participation onto a series of individual and state characteristics. The “Barrier Index” is the
inverse variance weighted average of the log of the individual administrative barrier variables in Table
1. “State Mean Barrier Index” is the average of the value of the barrier index within a state from
1988–1992. “State Barrier Index Residual” is defined as the difference between the average of the
state barrier index from 1988–1990 and the value of the barrier index for the state in 1991 and 1992.
Standard errors are in parenthesis and obtained using a weighted bootstrap procedure with 1,000
iid exponential weights drawn at the state-level. The second panel reports F-statistics from an OLS
version of the probit model and within different participation probability ranges based on the probit
estimates. To calculate the F-statistic within a specific range of F̂ , define RSS(q) as the residual sum
of squares, equal to the sum of [P − F̂ ]2 taken over all observations in the range. The F-statistic is
calculated as (1) the difference in RSS(q) for the restricted model excluding the instruments and the
unrestricted model RSS(q) including the instruments divided by the degrees of freedom, divided by
(2) the residual variance computed over all observations in the sample, using F̂ from the restricted
model.

46



Table A5: First Stage Estimates Using Close Election RD—Detailed Estimates

Barrier Index OLS AFDC Probit

log Ŵ -0.228 -2.564***
(0.296) (0.646)

logN + 10 -0.006** -0.445***
(0.003) (0.031)

logG 0.163 0.825***
(0.108) (0.154)

log Ŵ (1− t) 0.460* 0.677*
(0.257) (0.371)

Age -0.003** 0.009
(0.001) (0.008)

Black -0.008 0.142
(0.012) (0.090)

Family Size -0.022 -0.039
(0.018) (0.034)

Number of Children < 6 0.004 0.295***
(0.003) (0.041)

Food Stamp Guarantee -0.308 1.873*
(0.463) (1.131)

Notes: ∗ ∗ ∗p < 0.01; ∗ ∗ p < 0.05; ∗p < 0.1. This table reports estimates of an OLS regression of the barrier index onto
a series of individual and state characteristics and a probit model for AFDC participation using those same variables.
“Dem Gov Vote Share” measures the share of the vote the Democratic candidate for governor received in the last
election. “Dem Share Under 60%” is an indicator for whether the winning democratic candidate’s vote share was under
60%. “State Legislature” variables are indicators for the partisan control of the state legislature. Observations for states
that aggregated by the SIPP or had outlier values for the political variables are omitted (i.e., Washington DC, Colorado,
Maine, Vermont, Iowa, North Dakota, South Dakota, Alaska, Idaho, Montana, and Wyoming). “Budget Constraint”

variables include log Ŵ , logN + 10, logG, and log Ŵ (1 − t). Standard errors are in parenthesis and obtained using a
weighted bootstrap procedure with 1,000 iid exponential weights drawn at the state-level. The second panel reports
F-statistics from an OLS version of the probit model and within different participation probability ranges based on
the probit estimates. To calculate the F-statistic within a specific range of F̂ , define RSS(q) as the residual sum of

squares, equal to the sum of [P − F̂ ]2 taken over all observations in the range. The F-statistic is calculated as (1) the
difference in RSS(q) for the restricted model excluding the instruments and the unrestricted model RSS(q) including
the instruments divided by the degrees of freedom, divided by (2) the residual variance computed over all observations

in the sample, using F̂ from the restricted model. Table continues onto next page.

47



Table A5: First Stage Estimates Using Close Election RD—Detailed Estimates (continued)

Barrier Index OLS AFDC Probit
Northeast -0.473*** 0.471*

(0.159) (0.251)
Midwest -0.325*** 0.275

(0.118) (0.172)
West -0.232 0.198

(0.148) (0.240)

Elections:
Dem Gov Vote Share -0.212 0.517*

(0.162) (0.302)
Dem Share Under 60% -0.066* 0.035

(0.035) (0.079)
State Legislature:
Republican 0.056 0.100

(0.064) (0.148)
Split 0.236*** -0.136

(0.044) (0.094)
Interactions:
Republican × Dem Share Under 60% 0.180** -0.814***

(0.076) (0.171)
OLS F-Stat for Instruments 13.40

Pseudo F-Stat by Part. Prob. Range

0.00–0.25 4.60
0.25–0.66 9.10
0.66–1.00 1.70
Observations 3,152 3,152

Notes: ∗ ∗ ∗p < 0.01; ∗ ∗ p < 0.05; ∗p < 0.1. This table reports estimates of an OLS regression of the barrier index onto
a series of individual and state characteristics and a probit model for AFDC participation using those same variables.
“Dem Gov Vote Share” measures the share of the vote the Democratic candidate for governor received in the last
election. “Dem Share Under 60%” is an indicator for whether the winning democratic candidate’s vote share was under
60%. “State Legislature” variables are indicators for the partisan control of the state legislature. Observations for states
that aggregated by the SIPP or had outlier values for the political variables are omitted (i.e., Washington DC, Colorado,
Maine, Vermont, Iowa, North Dakota, South Dakota, Alaska, Idaho, Montana, and Wyoming). “Budget Constraint”

variables include log Ŵ , logN + 10, logG, and log Ŵ (1 − t). Standard errors are in parenthesis and obtained using a
weighted bootstrap procedure with 1,000 iid exponential weights drawn at the state-level. The second panel reports
F-statistics from an OLS version of the probit model and within different participation probability ranges based on
the probit estimates. To calculate the F-statistic within a specific range of F̂ , define RSS(q) as the residual sum of

squares, equal to the sum of [P − F̂ ]2 taken over all observations in the range. The F-statistic is calculated as (1) the
difference in RSS(q) for the restricted model excluding the instruments and the unrestricted model RSS(q) including
the instruments divided by the degrees of freedom, divided by (2) the residual variance computed over all observations

in the sample, using F̂ from the restricted model.
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Appendix B Cubic Spline

The five-knot natural cubic spline is given here, using similar notation to (Hastie et al.,

2009, p. 145). Splines using different numbers of knots are analogous. Let F1, F2, F3, F4,

and F5 denote the five knot points of F̂ , the predicted participation probability. The g

function is specified as

g(F̂ ) = g1 + g2F̂ + g3S3 + g4S4 + g5S5 (25)

where

S3 = d1 − d4 (26)

S4 = d2 − d4 (27)

S5 = d3 − d4 (28)

where

d1 =
max(0, F̂ − F1)−max(0, F̂ − F5)

F5 − F1

(29)

d2 =
max(0, F̂ − F2)−max(0, F̂ − F5)

F5 − F2

(30)

d3 =
max(0, F̂ − F3)−max(0, F̂ − F5)

F5 − F3

(31)

d4 =
max(0, F̂ − F4)−max(0, F̂ − F5)

F5 − F4

(32)
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