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Abstract

Human behavior plays a crucial role in infectious disease transmission, yet traditional
models often overlook or oversimplify this factor, limiting predictions of disease spread
and the associated socioeconomic impacts. Here we introduce a feedback-informed
epidemiological model that integrates human behavior with disease dynamics in a
credible, tractable, and extendable manner. From economics, we incorporate a dynamic
decision-making model where individuals assess the trade-off between disease risks and
economic consequences, and then link this to a risk-stratified compartmental model of
disease spread taken from epidemiology. In the unified framework, heterogeneous
individuals make choices based on current and future payoffs, influencing their risk of
infection and shaping population-level disease dynamics. As an example, we model
disease-decision feedback during the early months of the COVID-19 pandemic, when the
decision to participate in paid, in-person work was a major determinant of disease risk.
Comparing the impacts of stylized policy options representing mandatory,
incentivized/compensated, and voluntary work abstention, we find that accounting for
disease-behavior feedback has a significant impact on the relative health and economic
impacts of policies. Including two crucial dimensions of heterogeneity—health and
economic vulnerability—the results highlight how inequities between risk groups can be
exacerbated or alleviated by disease control measures. Importantly, we show that a
policy of more stringent workplace testing can potentially slow virus spread and,
surprisingly, increase labor supply since individuals otherwise inclined to remain at
home to avoid infection perceive a safer workplace. In short, our framework permits the
exploration of avenues whereby health and wealth need not always be at odds. This
flexible and extendable modeling framework offers a powerful tool for understanding the
interplay between human behavior and disease spread.
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Author summary

Models help researchers and policymakers predict how infections spread and compare
control strategies. However, current models neglect how behavioral choices (like social
distancing or vaccination) influences and reacts to disease spread. We present a new
model combining ideas from epidemiology and economics to describe feedback between
individual decisions, population health, and economic outcomes. Simulated individuals
evaluate their future infection risk and weigh the costs/benefits of possible actions.
Different health or economic vulnerabilities lead to distinct trade-offs and behaviors.
We model the early stage of COVID-19 when people had to choose between going to
work and risking infection or staying home and losing income. More generally, our
model provides a flexible tool for policymakers to compare interventions to reduce
disease, limit costs, and prevent disparities.

Introduction 1

Infectious disease transmission is driven by human behavior, which brings people in 2

contact with the pathogens we host. For most of human history, behavioral 3

modifications to reduce transmission, such as quarantine and isolation, were the main 4

methods of infection control (1). Even today, the choice to get tested, vaccinated or 5

take medication drives individual and collective risk for many diseases (2). During the 6

early years of the COVID-19 pandemic, policies to induce widespread behavior changes 7

such as business/school closures, stay-at-home orders, and travel bans were common (3). 8

While these interventions dramatically reduced disease spread and healthcare burden for 9

some time, they also caused substantial disruptions to well-being (4). Thus, a recurring 10

question facing policy-makers has been “How do we reduce disease burden while 11

simultaneously mitigating the social and economic costs of doing so?” 12

Disease transmission models are powerful tools for informing control policy, as 13

evidenced by their widespread use for infections such as COVID-19, HIV, influenza, 14

measles, and malaria (e.g. 5; 6; 7; 8; 9; 10; 11). Historically, these models track changes 15

in the portion of a population at risk of infection and in different stages of disease 16

progression (e.g., the Susceptible-Infectious-Recovered (SIR) model, 12). Transitions 17

between stages are determined by composite parameter values informed by 18

epidemiological observations—such as the probability of transmission per time period 19

for a given population density or the average duration of infectiousness—which obscures 20

the specific impact of human behavior or the generative process governing it. During 21

COVID-19 and to some extent before, data such as contact surveys (13; 14), mobility 22

metrics (15; 16), or real-time vaccination tracking (17) allowed models to modify 23

parameter values using these data-derived correlates of behavior, often at high temporal 24

or spatial resolution (18) or stratified by known risk factors like age (19; 20). However, 25

these approaches abstract from the mechanisms behind individual-level decision making 26

and thus fail to capture the dynamic trade-offs between health and other aspects of 27

well-being that individuals face as disease burden and control strategy evolve. 28

To adequately capture health-wealth trade-offs, we need modeling frameworks that 29

account for the complex interactions between disease propagation and the behaviors 30

that drive it, including feedback loops (whereby behavior change leads to changes in 31

disease dynamics that in turn lead to further shifts in behavior), externalities (whereby 32

individual choices have an impact on others in society), and heterogeneity in decision 33

making (whereby individuals may face different trade-offs depending on their health or 34

economic vulnerability). Otherwise, it is difficult to generate reliable projections of 35

disease transmission or to evaluate the welfare consequences—including economic 36

costs—of prospective public health policies. 37
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Health economists have long integrated infectious disease models in cost-benefit and 38

cost-effectiveness analyses to guide public health policy (21; 22). However, these 39

approaches often rely on simple models of disease spread that rarely consider feedback 40

among disease prevalence, individual behavior, and public policy (23). Projected health 41

outcomes are typically converted to disability- or quality-adjusted life years (24), 42

metrics which do not encompass overall well-being (25; 26). Furthermore, the economic 43

analyses accompanying these studies tend to focus narrowly on direct medical costs and 44

particular indirect costs such as lower productivity, neglecting costs stemming from 45

behavioral changes, income loss, and the broader disutility of policy constraints. This 46

omission can lead to underestimates of the full cost of the disease or policies to curb it, 47

along with inaccurate predictions about behavior and thus disease spread. 48

The study of how individuals weigh trade-offs to make decisions in a variety of 49

circumstances—including infectious disease outbreaks—is a substantial part of research 50

in economics. Prior work has integrated disease dynamics into models of human 51

behavior related to labor supply, consumption, and risky behaviors (see e.g., 52

27; 28; 29; 30; 31; 32). With a primary goal of better understanding human behavior, 53

these studies have placed less emphasis on the epidemiological components, potentially 54

leading to misspecifications of how diseases are contracted, transmitted, or progress. 55

Nevertheless, there are notable examples where explicit behavioral modeling has been 56

used to recover otherwise hidden health dynamics (33). Despite capturing how behavior 57

endogenously responds to prevailing disease conditions, these models thus tend to be 58

ill-equipped to forecast disease dynamics, which in turn can lead to inaccurate forecasts 59

of behavioral responses and evaluations of intervention policies. 60

To address these challenges, a growing body of research in behavioral epidemiology 61

and economic epidemiology has begun developing integrated frameworks of disease 62

spread and human behavior (e.g., 34; 35; 36; 37; 38; 39; 40; 41; 42; 43; 44; 45). Prior 63

models have included reasonable approximations to both pathogen transmission and 64

behavior. For example, traditional infectious disease models have been extended to 65

include heuristic functions for changes in contact rates with disease burden (e.g., 66

46; 47; 48; 49), to model the spread or “imitation” of behaviors contemporaneously with 67

infection (see e.g., 50; 51), or to consider behavior as a game-theory problem where 68

disease levels are static on the timescale of decision making and large groups of the 69

population collapse into a small number of “players” all making the same sets of 70

decisions (e.g., 52; 53; 54; 55; 56). 71

Inspired by the needs of policymakers during the COVID-19 pandemic, new 72

approaches to model behavior and disease spread have emerged. One leverages 73

macroeconomic models assuming non-infected individuals supply labor thereby 74

contributing to aggregate output (57; 58; 59; 60; 61; 62; 63; 64). These frameworks 75

forecast policy-relevant indicators such as unemployment and gross domestic product, 76

but, without a formal model of individual-level decision making (or by assuming 77

imitation), cannot fully capture the feedback and trade-offs that influence 78

economically-relevant behavior or adequately capture the welfare consequences of policy. 79

Approaches that do directly model how individuals make decisions often employ fixed 80

decision rules, sometimes informed by data, to predict how behavior will respond to 81

prevailing disease conditions (65; 66; 67; 68; 69; 70). Such approaches are not designed 82

to capture how individuals re-optimize under counterfactual policies or disease scenarios. 83

A handful of prior papers have incorporated formal models of behavior where 84

decisions are made to optimize a measure of well-being or utility with potentially 85

incomplete information, and can thus project how behavior endogenously responds to 86

changing disease and policy conditions (71; 72; 73; 74). However, these studies have two 87

main limitations. First, some have ignored individual heterogeneity in vulnerability to 88

disease (e.g., preexisting conditions) or economic hardship (e.g., low income), instead 89
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differentiating individuals only by their infection state (71; 72; 73). Capturing 90

population heterogeneity is critical not only for quantifying the distributional benefits 91

and burdens of different policy interventions, but also for accurately predicting 92

population-level disease spread, as concentration of infection in risk groups promotes 93

persistence despite control efforts. A second limitation of this body of work is the use of 94

non-standard or inflexible approaches to describing infection spread (29; 31; 74; 75; 76). 95

For example, Brotherhood et al. (74) capture important margins of individual 96

heterogeneity in their model of behavior, but make limiting assumptions in their 97

epidemiological model (e.g., random mixing, no group stratification, calibrated disease 98

dynamics). 99

Fig 1. Conceptual overview of the Feedback-Informed Epidemiological
Model (FIEM). The decision model simulates individual behaviors based on perceived
disease dynamics, economic costs, policies, and demographics. These behaviors drive
aggregate economic outputs and also disease dynamics. Concurrently, the infection
model stratifies individuals into risk groups based on their decisions and individual
factors, tracking disease transmission, progression, and recovery. The resulting disease
dynamics again affect future individual behaviors and the course of the epidemic. A
detailed visualization of each model component is presented in Fig 2.

In this paper, we present a dynamic feedback-informed epidemiological model 100

(FIEM) that draws from economics and epidemiology to integrate infectious disease 101

dynamics with individual behavior (Fig 1). Our framework classifies individuals based 102

on their infection state variables, such as time-varying infection status (e.g., susceptible, 103

infectious) and non-infection state variables, which include decision status (e.g., choice 104

to work or engage in social distancing), as well as by a set of other state variables that 105

may be fixed or time-dependent (e.g., demographics, health vulnerability, socioeconomic 106

profile). The two core components of the dynamic mathematical model- the 107

risk-stratified model of disease transmission and the individual-level model of 108

decision-making- determine how individuals’ infection and decision states evolve over 109

time (Fig 2). We designed FIEM to be flexible, allowing the disease and decision models 110

to be extended in many possible directions, such as adding more infection states (e.g., 111

asymptomatic, mild-symptomatic), incorporating additional decision sets (e.g., 112

compliance with mask mandates, willingness to take vaccine, allocating time between 113

work and leisure), or specifying new state variables to further differentiate individuals. 114

Together, these characteristics make FIEM a powerful and flexible tool for policy 115

analysis; generating predictions about disease spread and economic consequences that 116

capture endogenous individual decision making, and allowing for analysis of the impact 117

of policy interventions across different types of individuals in the population. Because 118

the model explicitly incorporates feedback between individual decisions and the 119

aggregate spread of illness, it can generate counterintuitive results. For example, we find 120

that a policy testing individuals who choose to work can reduce infection rates while 121

increasing labor supply and income since individuals who might otherwise stay home 122

perceive the workplace as safer. While this outcome depends on model assumptions, it 123

challenges the common perception that health and economic goals are inherently at 124

odds, and illustrates the utility of a unified framework for uncovering both direct and 125

indirect effects of policy. 126
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Materials and methods 127

In this section we summarize the conceptual structure of the model and the application 128

to the decision to work during the early phase of COVID-19. Details of our model 129

including the motivation, mathematical formulations, and computational approaches are 130

provided in the Supplementary Materials. Model code is available at 131

https://github.com/HopkinsIDD/epi-econ. 132

Components of the feedback-informed epidemiological model 133

Individual-level decision model. Individuals make decisions each period, such as 134

whether to work or not, based on their perception of infection levels and the 135

expectations they form about how their choices influence their future risks of getting 136

infected (Fig 2). Individual decision-making is modeled as a discrete choice to maximize 137

expected lifetime utility, a well-established method in economics (77; 78; 79) that aligns 138

with other methods of modeling behavior from psychology and sociology (80). 139

Individuals make decisions dynamically—their actions are optimal from their individual 140

perspective given how these choices influence the current period’s utility (a function of 141

their infection and non-infection state variables along with their choice) as well as the 142

expected (since future outcomes are probabilistic) present discounted stream of future 143

utility. An optimal decision thus reflects the utility payoffs, information, and beliefs 144

structure of the model, which can be flexibly specified within this modeling framework. 145

Individual and population state variables evolve each period based on the decisions 146

made by individuals in the population. 147

Fig 2. Detailed framework of the Feedback-Informed Epidemiological Model
(FIEM). As an example scenario, we model the decision to work (‘work choice’) during
an outbreak of an infectious disease transmitted between casual contacts. Individuals
are stratified by their vulnerability to disease (red vs blue) and socio-economic status
(SES) (bright vs pale color). Over time (left to right of figure) they repeatedly weigh
the trade-off between income from working and risk of disease. Top row:
Decision-making model. Each time period (grey hashed box), individuals make a
decision (e.g., to work or abstain from working), based on their own infection status,
population-level disease burden, and expected individual utility. Middle row: Decisions
influence the distribution of individuals across risk groups (pie charts), which feeds into
the epidemiological model (downward arrow). Bottom row: Epidemiological model.
Risk groups membership, which depends on individual characteristics and decisions,
influences the probability of transitioning between infection states (e.g., S -
susceptible/uninfected, I - infected/infectious, R - recovered/immune). The updated
individual and population-level disease burden then influences decisions made in future
periods (upwards arrow and middle row). The framework is adaptable to other
behaviors and population characteristics.

Risk-stratified infection model. Each period, individuals in FIEM are classified 148

into a discrete set of risk groups based on their behavioral choices and non-infection 149

state variables (Fig 2). The risk groups are used to construct a stratified compartmental 150

model of infection spread, which tracks at a minimum the proportion of each risk group 151

that is susceptible or infected, but may also track symptom severity, degree of immunity 152

to infection, or diagnostic status, for example. Parameters governing the transitions 153

between disease states can vary by risk group (e.g., contact rates, susceptibility to 154

infection or severe outcomes, duration of infectious period), and individuals may 155
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preferentially make contact and thus transmit to others in similar risk groups. The 156

dynamic infection model simulates disease spread and progression to determine the 157

distribution of infection states at the end of each period. 158

Disease-decision feedback loop. The core of our model lies in the dynamic 159

feedback loop between individual behavior and the distribution of disease states in the 160

population. Aggregated individual decisions in combination with baseline characteristics 161

determine the distribution of people across risk groups, which affects individuals’ risks 162

of acquiring, transmitting, and developing severe outcomes as a result of infection. This 163

subsequently alters overall disease dynamics, and the optimal individual behavior going 164

forward. This cyclical process captures the complex interplay: the infection level in the 165

population influences individual-level behavior, and those behavioral responses in turn 166

reshape the trajectory of the disease in the population. 167

Decision scenario, model equations, and parameterization 168

To demonstrate the capabilities of FIEM, we designed a simple scenario to capture one 169

of the core trade-offs faced during the early stages of the COVID-19 pandemic: the 170

decision to work and earn income or stay home and minimize disease risk (see 171

Supplementary Methods for details). 172

Disease spread in the population is described by a risk-stratified ‘SIRS’ (susceptible, 173

infectious, recovered, susceptible) model (81), where individuals begin as uninfected and 174

susceptible to infection (S), and may become infected and infectious (I) after contact 175

with another infected individual. Infected individuals eventually recover (R) and 176

develop immunity to reinfection, which over time can wane leading them to return to a 177

susceptible (S) state. 178

Each period, if an individual chooses to work, they earn income but are more likely 179

to contact infectious individuals, become infected, and incur costs (monetary and 180

otherwise) related to infection. We include strong health-wealth trade-offs by 181

incorporating two additional margins of individual heterogeneity—socioeconomic status 182

(SES, low or high) and vulnerability to the disease (vulnerable or non-vulnerable). The 183

combination of an individual’s socioeconomic status (SES), vulnerability to severe 184

disease, and decision to work determines their risk group. The rate at which susceptible 185

individuals in risk group g become infected (the “force of infection”, FOI) is: 186

FOIg = β
∑
g2∈G

₡g,g2Ig2(t)/N. (1)

Here β is the probability of disease transmission per contact per time, ₡g,g2 is the 187

propensity for contact between individuals in risk group g and those in risk group g2, 188

Ig2 is the number of infected individuals in risk group g2, and N is the total population 189

size. Contacts (₡) are higher among individuals who choose to work and for those with 190

low SES, and there is a degree of preferential mixing within risk groups. 191

Risk group membership changes dynamically as individuals decide whether to alter 192

their behavior (in this case, decision to work) in response to their assessment of the 193

potential costs and benefits. In time period t individual m has utility u (overall 194

well-being including health and income/expenses) specified as 195

u(zmt, dmt) = log cmt(dmt)− (dmt + imtpc)θhhmt + imtθx(1 + V ULmθv). (2)

In this function, the state vector z includes individuals’ infection status (e.g., 196

susceptible), socioeconomic status (e.g., high-SES), and vulnerability status (e.g., 197

non-vulnerable). Although the components of z appear explicitly in the utility 198
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expression, we retain z as a shorthand to represent the individual’s full risk and health 199

profile. The decision to work in this time period is tracked using the indicator variable 200

d. Abstaining from work reduces income, which in turn reduces how much an individual 201

can consume and thus utility from consumption (c(d)). Low SES individuals experience 202

greater reductions in consumption when abstaining from work. i is an indicator variable 203

for whether they are currently infected, θx is the utility cost of infection, V UL is an 204

indicator variable for belonging to the high vulnerability risk group, and θv is the 205

increase in the disutility of infection for vulnerable individuals. We assume there is a 206

baseline hassle cost of working given by θhh (fixed and random effects), while pc 207

describes the increase in this cost if infected. With this formulation, the costs of 208

working for a susceptible individual (currently uninfected) are the increased probability 209

of future income loss and the disutility of becoming infected. The costs for an infected 210

individual that chooses to work are the ongoing costs associated with disease symptoms 211

or the stigma associated with being infectious. 212

Each timestep, each individual solves a dynamic optimization problem to decide 213

whether to change their behavior (engage in in-person work) (78). The solution to this 214

optimization problem - a probability distribution over decisions in the next time step - 215

is given by the solution to a recursive Bellman equation for the value function V (total 216

utility over an infinite time horizon, present-discounted at rate κ < 1 ) 217

V (zmt) = max
dmt∈D

{
u(zmt, dmt) + κ

∑
zmt′

P(zmt′ |zmt, dmt)V (zmt′)
}
. (3)

The term P(zmt′ |zmt, dmt) encodes the dynamic infection model, describing the 218

probability that an individual ends up in the state zmt′ conditional on being in state 219

zmt and making the decision dmt (e.g., moving from infection state S to I, given an 220

individual goes to work). With additional assumptions to simplify the form of the value 221

function, the simulation is conducted by an iterative algorithm that alternates between 222

solving the optimization problem and updating the disease trajectory. 223

As a proof of concept, FIEM has not been fully validated against real-world data; 224

instead, its parameters are sourced from previous studies grounded in empirical 225

observations. We use an infectious period of ≈ 7 days, an average duration of immunity 226

of ≈ 6 months, and a basic reproduction number (R0) of 2.6 (an effective average over 227

risk groups at baseline levels of workforce participation). To parameterize the term of 228

the utility function, we assume the average non-vulnerable individual would be willing 229

to pay ∼ $6,000 per day to avoid infection (relative to a mean daily income of $180), 230

based on prior estimates of the value per statistical case (see Supplementary Materials, 231

pp. 13-14). A vulnerable individual would be willing to pay triple this amount to avoid 232

infection (all monetary values in the paper are expressed in U.S. dollars (USD)). If an 233

individual with low-SES chooses not to work they would have to reduce their 234

consumption by 85%, while a high-SES individual would forgo 75% in the same 235

situation. A detailed formulation and explanation of the variables, equations, and 236

parameter values is provided in the Supplementary Materials. 237

For simplicity, we don’t explicitly model working from home but our 238

parameterization indirectly incorporates its main effect: reducing work contacts is less 239

costly for high-SES individuals. When making decisions, we assume that individuals can 240

accurately assess their own infection status, as well as their short-term risk of infection 241

conditional on both their decision to work and the population-prevalence of infection 242

(which we assume is correct but delayed by a one week lag in case reporting). FIEM can 243

easily accommodate alternative assumptions about the information available to 244

individuals and their understanding or beliefs. 245
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Results 246

Dynamic behavior modification alters epidemic trajectory 247

Awareness of disease transmission in the community triggers individuals to make 248

decisions to reduce the costs of being infected, and our integrated epidemic-behavior 249

model (FIEM) captures this dynamic feedback endogenously (Fig 3). Compared to a 250

traditional “fixed decision” epidemic model where the proportion of the population 251

working is constant (i.e., constant contact patterns) for the duration of the outbreak, 252

under FIEM, workforce participation drops quickly after the outbreak starts, resulting 253

in slower initial epidemic growth and a lower peak (i.e, behavioral feedback naturally 254

“flattens the curve”). Early on, knowingly-infected individuals choosing not to work due 255

to the additional costs of working while infected are the main driver of the reduction in 256

epidemic growth rate, but as infection prevalence increases, susceptible individuals avoid 257

work due to the perceived risk of infection. In both cases, the drop in workforce 258

participation results in fewer contacts between susceptible and infectious individuals 259

and thus fewer new infections. Longer-term, in the absence of additional interventions, 260

the proportion working is predicted to increase again as the peak recedes, but infection 261

persists leading to a lower working population than before the outbreak. When both the 262

standard and feedback-informed models are parameterized to give the same average 263

proportion of the population working over a year-long simulation period, FIEM predicts 264

fewer infections. This simple comparison shows how including endogenous behavior can 265

alter predictions of disease trajectories. 266

Fig 3. Effect of endogenous behavior change on disease dynamics. The
time-course and time-average of infection levels (A,B) and workforce participation (C,D)
for three model scenarios. In the feedback-informed epidemiological model (‘FIEM’,
orange), individuals dynamically decide to work or abstain from work based on
perceived costs and benefits, altering the degree of workplace transmission and thus
population-level infection burden (initial working 75%, minimum working 60%, average
working 72%, R0 ∼ 2.05, peak prevalence 13.7%). Two alternative fixed decision models
are included for comparison: one in which the proportion of the population working
each period is held constant at the pre-outbreak level (black, 75% working, peak
prevalence 24.1%, R0 ∼ 2.62), and another where the work level is held constant at the
average value observed in the feedback informed model after 1 year (blue; R0 ∼ 2.52,
peak prevalence 22.5%, 72%, blue). R0 values are estimated by fitting the logarithmic
infection curves for the first 20 days. Note that panel B shows the cumulative average
days each individual spends in the infectious state over a one-year SIRS simulation
(allowing reinfections), so values can exceed the 7-day mean duration of a single
infection event.

The predicted impact of behavior on disease dynamics depends on the underlying 267

assumptions of the model, in particular, the health and wealth “payoffs” individuals 268

weigh in their decision-making process (Fig 4). Infections that transmit more efficiently 269

cause earlier and higher peaks and trigger earlier and more dramatic reductions in the 270

number of susceptible individuals choosing to work (Fig 4A). If contacts at work are a 271

larger portion of total contacts, meaning the majority of potential exposure to infected 272

individuals occurs at work, a greater proportion of individuals choose not to work. 273

However, within the predefined sensitivity range, the resulting epidemic curve shows no 274

substantial deviation from scenarios where work contacts are less prevalent (Fig 4B). 275

The “utility cost of infection” captures the value per statistical case of COVID-19. 276

This cost is intended to account for the possible clinical outcomes of an infection, 277
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Fig 4. Mechanisms driving individual behavior and disease feedback. The
time course of infection levels (first row) and workforce participation (for the entire
population - second row - or stratified by infection status - third to fifth row) for model
scenarios varying a single parameter value while others are fixed. Black curves in each
panel show row outcomes using the baseline parameters (Fig. 3, SI Tables 1, 2).
Parameters are varied by column: A) transmission rate (and thus R0), B) proportion of
all contacts occurring at work (holding R0 constant), C) utility cost of infection, D)
utility cost of choosing to work while infected, E) the wage gap (the difference in
consumption when working vs not working). For all parameters, ranges extend from
40% below to 40% above baseline value.

reflecting the experience of typical symptoms as well as rare but costly severe outcomes. 278

While this set-up limits the impact of infection to arise through the utility function and 279

not other channels such as reduced consumption because an individual needs to seek out 280

and pay for medical care, it preserves our ability to assess the core health-wealth 281

tradeoff that motivates our scenario. As this cost increases, susceptible individuals have 282

stronger incentives to avoid the increased risk of infection at work. Thus, the number of 283

individuals working drops lower once infection becomes common and the epidemic peak 284

is blunted (Fig 4C). In contrast, the “utility cost of working while infected” represents 285

the additional cost of working for infected individuals. As this cost increases, infected 286

individuals are more likely to stay away from work, reducing their contact with others. 287

More infected individuals choosing to stay home leads to a decline in the early epidemic 288

growth rate as well as the peak infection rate (Fig 4D). Importantly, higher values of 289

the “utility cost of working while infected” lead to an increased labor supply of 290

susceptible individuals; infected individuals optimally choose to abstain from work; and 291

the risk of acquiring infection at work thus decreases. Finally, “wage loss” (i.e., the 292

difference between individuals’ income if they do or do not work) further influences 293

work choice decisions. Thus, greater wage losses create a stronger incentive to work 294

despite illness or risk of infection, since consumption (a component of the utility 295

function) increases with income from wages. As employment increases, so does disease 296

transmission, causing larger epidemic peaks (Fig 4E). This pattern is partially driven by 297

the design of this model scenario, which abstracts from financial savings, but we note 298

that this incentive would persist in a model that allowed individuals to reduce the 299

variation in their consumption each period by relying on their savings. The impact of 300

other parameters—such the time lag in individuals’ information on population-level 301

disease burden and additional utility cost of infection for vulnerable individuals—are 302

shown in Figs S5 and S6. 303

Consequences of heterogeneous health-wealth trade-offs 304

To demonstrate our framework is capable of accounting for the inherent heterogeneity of 305

real-world populations, we next examine how variation among individuals in 306

vulnerability to disease and socioeconomic status impacts behavior, shapes trade-offs, 307

and subsequently influences the epidemic trajectory. In our scenario, high-SES 308

individuals make more money if working and have a lower opportunity cost of not 309

working, which we attribute to omitted factors, such as savings or having jobs that 310

allow work-from-home arrangements. Low-SES individuals have more contacts at work 311

and preferentially contact other low-SES individuals. Vulnerable individuals face higher 312

utility costs from infection (i.e., have a higher likelihood of progression to more severe 313

infection), but have no difference in per-exposure susceptibility to acquiring disease. We 314

evaluated the infection trajectory predicted by our feedback-informed model for a 315
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baseline population with an even distribution of individuals across four risk groups (i.e., 316

non-vulnerable/high-SES, vulnerable/high-SES, non-vulnerable/low-SES, 317

vulnerable/low-SES) (Fig 5, see Fig S8 for alternative distributions yielding similar 318

results). 319

Fig 5. Disease-decision dynamics across heterogeneous risk groups. The
dynamics of infection levels and the decision to work in a population stratified by
vulnerability to severe disease if infected (vulnerable - red, non vulnerable - blue) and
socioeconomic status (high SES - solid line or circle, low SES - dashed line or triangles).
A) Infection prevalence over time; B) Fraction working over time; C) Share working vs
infection prevalence for individuals of all infection statuses (entire population),
susceptible individuals only (S), infected individuals only (I), and recovered/immune (R)
individuals only. In this scenario, the four risk groups are of equal size.

We start by analyzing individual incentives to preserve their economic well-being. 320

Low-SES individuals face a stark and disproportionate trade-off between economic 321

needs and health preservation. Low-SES individuals choose to work during the early 322

outbreak stage despite infection risk, driven by their urgent need to meet necessities. As 323

a consequence, low-SES individuals experience higher early exponential growth rates 324

and epidemic peaks (Fig 5, dashed curves and triangles). Conversely, high-SES 325

individuals exhibit more cautious behavior, with more individuals abstaining from work 326

for a given infection level, reflecting their financial ability to prioritize health over 327

wealth (Fig 5, solid curves and circles). These results underscore the need to consider 328

socioeconomic inequalities when designing public health policies. 329

Next we analyze individuals’ incentives to protect their health. Vulnerable 330

populations exhibit stronger self-protective behavior due to the higher risks associated 331

with infection. This feature creates an incentive for these individuals to not work, 332

forgoing some consumption, during the period of highest disease burden (Fig 5, red 333

curves and shapes). Since we assume individuals have perfect information about their 334

current health state, only the susceptible group responds to infection risks (Fig 5C). 335

This assumption can be relaxed to capture settings where infected individuals may be 336

unaware of their status and either i) abstain from work believing it could prevent 337

infection, and ii) continue to work without experiencing any of the utility costs of 338

working while infected. 339

Our results highlight how key differences in health-wealth trade-offs experienced by 340

different risk groups influence the joint trajectory of infection and behavior, as well as 341

distributional consequences of the epidemic. 342

Evaluating the impact of policy interventions 343

The goal of our framework is to provide a tool for analyzing disease control policies that 344

incorporate endogenous behavior changes to improve prediction of infection burden, 345

understand the distributional consequences of policies, calculate welfare, and identify 346

optimal policies based on the specific needs and values of decision makers. To illustrate 347

this potential, we encoded and compared four different policy interventions within our 348

model (see Table 1 and Supplementary Materials): labor restriction, in which a portion 349

of the population is constrained to abstain from work; unconditional cash transfer, in 350

which a daily subsidy payment is provided to all individuals; conditional cash transfer, 351

in which a daily subsidy payment is provided exclusively to individuals who choose not 352

to work, and; paid sick leave, in which infected individuals who choose to abstain from 353

work receive baseline wages and additional subsidy payments. We assume perfect 354

compliance with policy recommendations and perfect knowledge of infection status. 355
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We compare peak infection and employment outcomes under varying degrees of 356

intervention for each policy (Fig 6). Labor restrictions have the largest marginal impact 357

in reducing total and peak infections. The highest level of restriction we simulate (70%) 358

lowers peak prevalence from 13.7% in the no-intervention scenario to 2.1% (Table 1, Fig 359

6A), but carries large economic burdens; translating to a $59 average loss of income per 360

day per capita relative to a scenario where the disease outbreak occurs with no infection 361

control policies in place and endogenous behavior change. Unconditional and conditional 362

cash transfer policies also demonstrate considerable reductions in peak infection rates; 363

at the highest payment levels (50% of the average wage), peak prevalence is reduced to 364

4.8% for unconditional and 2.7% for conditional transfers (Fig 6B–C). These policies 365

result in higher employment rates than labor restrictions, with unconditional transfers 366

maintaining higher participation than conditional transfers. However, cash transfers 367

have higher direct costs to the government than labor restrictions. Paid sick leave tends 368

to have less impact on reducing peak and average infections than cash transfers, but it 369

increases the average share of the population choosing to work (≈ 70%, vs 50–60% for 370

the unconditional transfer and 40–58% for the conditional transfer). 371

Fig 6. Effects of policy interventions on population health outcomes and
work decisions. A-D) Population infection prevalence and share of the population
choosing to work over time, for different policies. The black curves and stars are the
baseline model with no intervention—no labor restriction and no additional payment.
A) Labor restriction policy (yellow to red) that limits how much of the population is
able to choose to work. B) Unconditional cash transfer (green) that is delivered to all
individuals each period. C) Conditional cash transfer (blue) that is delivered to
individuals who choose not to work each period. D) Paid sick leave policy (brown),
which allows infected individuals to earn their full wage if they choose to not work while
infected. The simulations start with no policy intervention in place. The intervention
begins on day 20 and remains in place for 4 months (until day 140). E) Average share
of the population infected while policy is in place versus cost of policy. F) Average
share of the population choosing to work while policy is in place, vs cost of policy.
Policy costs include the sum of government spending to fund transfers plus lost wages to
individuals relative to their baseline wage earnings predicted by the model when there is
no disease present.

We also evaluate the cost-effectiveness of each policy. Costs are defined as the net of 372

subsidy payments and wage losses due to reduced labor supply, and expressed both as a 373

dollar value and percentage relative to the no intervention scenario (Table 1, Figs S8 374

and S9). We did not include other potential costs associated with these policies, such as 375

the costs of administration, diagnostic tests, or enforcing restrictions. We evaluate 376

effectiveness in terms of the peak infection prevalence, but other epidemiological metrics 377

could also be used. For labor restriction and cash transfers, stronger versions of the 378

policies which incur higher costs are associated with lower peak infection levels. Labor 379

restrictions achieve equivalent peak infection reductions for lower costs than other 380

policies (Fig 6E–F). For example, under the example parameters used for this 381

simulation, a labor restriction policy costing around $40 per person per day reduced 382

peak infections to a third of the no intervention scenario, whereas achieving similar 383

reductions costs close to $120 with an unconditional cash transfer. However, the paid 384

sick leave policy deviates from this pattern, and uniquely achieves reduced infection 385

rates and lower total costs as subsidy payments increase. For example, providing 50% of 386

the average wage for a paid sick leave policy reduces the total daily cost per capita to 387

$19 (0.76 of the cost with no intervention) and the average infection rate to 5.9% (0.43 388

of the peak size of no intervention). Paid sick leave accomplishes this infection reduction 389
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Table 1. Summary of policy scenarios and resulting health and economic outcomes. Metrics in parentheses are
relative to the no intervention scenario. Each policy starts 20 days after the first infection (infection prevalence ∼2.5%) and
continues for 4 months before being relaxed. Total daily cost per capita includes both lost wages due to the disease (compared
to a disease-free scenario with 75% working) and the cost of any subsidy payments provided. A detailed breakdown of costs,
stratified by wage loss and subsidy payment, is in Table S1. Each subsidy payment amount was benchmarked against the
average wage (AW) in the population ($180 per day). All the values are calculated over the policy implementation period
(day 20 to day 140).

Policy Description Policy Scenario Peak infec-
tion preva-
lence

Average
infection
prevalence

Average
share work-
ing

Total daily
cost per
capita

No interven-
tion

The simulation results were gener-
ated from the FIEM without apply-
ing any interventions.

No policy applied 13.7% (1) 8.2% (1) 66.7% (1) $13.0 (1)

Labor
restriction

This policy randomly constrains a
defined share of the population to
remain at home, while the rest are
free to choose whether or not to
work.

30% Labor restriction 6.9% (0.50) 5.2% (0.63) 48.9% (0.73) $36.3 (2.79)

40% Labor restriction 4.9% (0.36) 3.9% (0.48) 43.0% (0.64) $44.4 (3.42)

50% Labor restriction 3.6% (0.26) 3.1% (0.38) 36.5% (0.55) $53.2 (4.10)

60% Labor restriction 2.5% (0.18) 2.3% (0.28) 29.9% (0.45) $62.1 (4.78)

70% Labor restriction 2.1% (0.15) 1.8% (0.22) 23.0% (0.34) $72.0 (5.54)

Unconditional
cash transfer

This policy offers a daily subsidy
payment to all individuals
regardless of choices, mirroring
payments the American
government provided during the
COVID-19 pandemic.

Payment = 10% AW 9.0% (0.66) 6.5% (0.79) 59.5% (0.89) $37.9 (2.92)

Payment = 20% AW 7.2% (0.53) 5.6% (0.68) 55.4% (0.83) $60.5 (4.65)

Payment = 30% AW 6.0% (0.44) 4.8% (0.59) 53.2% (0.80) $81.2 (6.25)

Payment = 40% AW 5.5% (0.40) 4.5% (0.55) 51.0% (0.76) $101.8 (7.83)

Payment = 50% AW 4.8% (0.35) 3.9% (0.48) 50.0% (0.75) $121.3 (9.33)

Conditional
cash transfer

This policy provides a daily subsidy
exclusively to individuals who
choose not to work, aiming to
mitigate the economic consequences
of that decision.

Payment = 10% AW 7.6% (0.55) 5.8% (0.71) 57.5% (0.86) $30.0 (2.31)

Payment = 20% AW 5.2% (0.38) 4.2% (0.51) 51.8% (0.78) $46.3 (3.33)

Payment = 30% AW 4.0% (0.29) 3.6% (0.44) 47.3% (0.71) $63.1 (4.85)

Payment = 40% AW 3.7% (0.27) 3.3% (0.40) 43.4% (0.65) $80.6 (6.20)

Payment = 50% AW 2.7% (0.20) 2.5% (0.30) 40.8% (0.61) $96.6 (7.41)

Paid sick
leave

This intervention provides direct
financial support to infected
individuals who choose to stay
home from work, thus directly
targeting the health-wealth
trade-off infected individuals face.

Payment = 10% AW 10.4% (0.76) 7.3% (0.89) 67.3% (1.01) $12.2 (0.94)

Payment = 20% AW 8.6% (0.63) 6.4% (0.78) 68.1% (1.02) $11.8 (0.91)

Payment = 30% AW 7.4% (0.54) 5.8% (0.71) 68.8% (1.03) $11.5 (0.88)

Payment = 40% AW 6.7% (0.49) 5.3% (0.65) 69.3% (1.04) $11.4 (0.87)

Payment = 50% AW 5.9% (0.43) 4.9% (0.60) 70.0% (1.05) $11.3 (0.87)

while also increasing the average amount of labor supply in the population, thereby 390

reducing wage loss costs. By giving infected individuals a strong incentive to not work, 391

the risk of infection for a susceptible person declines and allows them to endogenously 392

decide to work, an example of a positive externality of the policy. In reality, the 393

cost-effectiveness of paid sick leave is complicated by the issue of accurate detection of 394

infectious individuals and malingering. However, our framework’s ability to model 395

individual decision-making allows us to capture the core effects of this policy and could 396

be expanded to include more details, providing valuable insights for policymakers who 397

must consider both the intended and unintended consequences of their interventions. 398

We also use our framework to evaluate which policy designs are optimal for 399

achieving pre-specified objectives (Fig 7). To do so, we construct a social welfare 400

function, which specifies how to weigh the cost of the policy versus the benefit of fewer 401

total person-days of infection and whether to impose a budget constraint for the policy’s 402

costs. These components may vary across scenarios or across policymakers. Once the 403

social welfare function is specified, we can solve for the policy stringency or payment 404
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level that maximizes this function subject to its constraints. We demonstrate how to 405

perform this type of analysis with the conditional cash transfer policy. We use a weight 406

that reflects a willingness to pay $1 per capita per day to reduce the total number of 407

people infected per day by 2.71, which is based on the value per statistical case of 408

COVID-19 used by the US Department of Health and Human Services (82). Given 409

these conditions, we find the optimal policy is a $65 payment per individual per day. 410

Defining the social welfare function for optimal policy is a complex decision, but FIEM 411

can flexibly capture different weights or budget constraints policymakers must contend 412

with when analyzing and designing policy. 413

Fig 7. Decision-maker informed optimal policy design. Schematic diagram
outlining how policymakers can use the feedback-informed epidemiological model to
identify an optimal policy design. We use the unconditional cash transfer policy as an
example, assessing its impact over a 4-month implementation period. A) The simulated
health benefits UH(x) and policy costs UC(x) as functions of daily subsidy payment,
fitted to generate continuous curves. Health benefits UH(x) are defined as the reduction
in the average fraction of days an individual spends infected during the evaluation
period. This is calculated as (

∑
t It −

∑
t I

p
t )/(NT ), where It is the number of infected

individuals on the day t with no intervention, Ipt N is the number of infected individuals
on the day t with implemented policy, N is the population size, and T is the duration of
the evaluation period. The policy cost UC(x) is defined as the payment cost per capita
per day over the evaluation period, given by (

∑
t Ct)/(NT ), where Ct denotes the

policy cost on day t. Increasing policy payment increases both health outcomes and the
associated cost of the policy, creating a trade-off between the two. B) Policymakers
decide how to numerically weigh the relative benefits and costs of each policy, and
specify any monetary or political economy constraints. This allows for the definition of
a single objective function U(x) = UH(x)− aUC(x) that can be maximized to determine
optimal payment amount, subject to the assumed parameters and defined constraints.
In this example, we estimated the daily cost of infection per capita to be ∼$6,000 (see
Supplementary Materials, Parameters section for a detailed calculation) so that a unit
increase in UC(x) ($1) would be equivalent to 0.00017 (a = 1

5912 ≈ 0.00017) of a unit in
UH(x). Increasing a places greater emphasis on minimizing policy cost, while decreasing
it prioritizes reducing infections averted. Note that the estimated values above are
dependent on the length of the evaluation period. In this example, the optimal policy
would be identified as a $73 per person per day cash transfer, which would be expected
to avert approximately 22 days of infection per 1,000 individuals in the population.

Distributional consequences of policies in heterogeneous 414

populations 415

To evaluate the differential impact of policy interventions in subgroups experiencing 416

different health-wealth trade-offs, we assess the impacts of each policy by socioeconomic 417

status and vulnerability to disease (Fig 8). Consistent with population level outcomes, 418

we found that all policies effectively reduced infection levels in all groups, but failed to 419

eliminate disparities in infection burden by SES status, although differences between the 420

groups were slightly reduced for more stringent policies. However, we observed 421

heterogeneous behavioral responses. Subsidy-based interventions disproportionately 422

influence the behavior of low-SES groups, moving from the no-intervention scenario 423

where they are more likely to maintain high labor supply despite infection risk to 424

creating opportunities for them to acknowledge their higher infection risk at work and 425

abstain. For example, conditional cash transfers cause a sharper decline in work 426
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participation for the non-vulnerable, low-SES group (from 59% to 35%) compared to the 427

high-SES group (60% to 48%). Interestingly, the vulnerable, high-SES group exhibits 428

modest reductions in choosing to work. This pattern is partially driven by the reduced 429

labor supply of low-SES individuals, which makes the probability of infection lower for a 430

high-SES individual if they opted to work. As the paid sick leave subsidy increased, 431

labor supply is maintained despite reductions in infection, and this is largely driven by 432

vulnerable populations, consistent with a reduction in their health-wealth trade-offs. 433

We also compare total income under each policy intervention relative to baseline 434

income by population subgroups. Each policy generates notable differences. For 435

example, low-SES individuals benefit substantially from the unconditional cash transfer 436

policy relative to high-SES people. This pattern is driven by the size of the transfer 437

relative to their labor earnings. Conversely, conditional cash transfer offers slightly 438

higher benefits to high-SES individuals when payments are low, as they already have less 439

incentive to work. Paid sick leave provides marginal but similar benefit to income for all 440

groups, by increasing the share of the susceptible population of each group that opts to 441

work. In contrast, labor restrictions significantly disrupt labor supply and negatively 442

impact the income of individuals in all risk groups, with larger drops among low-SES 443

individuals. This highlights how policies that appear effective by population-average 444

metrics, like overall infection prevalence reduced per dollar of total cost, may exacerbate 445

existing disparities and thus be considered suboptimal from an equity standpoint. 446

Fig 8. Heterogeneity of policy impacts by risk groups. Top row: Average
percent of the population infected. Middle row: Average fraction of the population
working. Bottom row: Income per capita per day, including wages and subsidies. A)
Labor restriction policy limiting how much of the population is able to choose to work.
B) Unconditional cash transfer delivered to all individuals each period. C) Conditional
cash transfer delivered to individuals that choose not to work each period. D) Paid sick
leave allowing infected individuals to earn their full wage if they choose not to work
while infected. Heterogeneity in outcomes across risk groups is denoted by different
curves: non-vulnerable (blue), vulnerable (red), low-SES (dashed lines), and high-SES
(solid lines). The black lines give baseline income without disease.

Discussion 447

During a public health crisis, policymakers must balance population health and 448

economic well-being. This task is complicated by subpopulations facing economic 449

precarity or health vulnerability (or both), so any policy will have unequal 450

distributional consequences. Useful models should predict the impacts of policy so that 451

at minimum, we avoid inefficient policies, e.g., those with higher economic costs for no 452

additional health benefits, or those with higher health burden but no economic benefits. 453

In this paper we present a flexible modeling framework that captures the feedback 454

between individual decision-making and infectious disease spread. We integrate a 455

mechanistic model of disease dynamics (consistent with established best-practices in 456

infectious disease epidemiology) with a formal model of individual decision-making 457

based on forward-looking utility maximization (commonly used in economics). Our 458

“feedback-informed epidemiological model” (FIEM) can flexibly encode the processes by 459

which an individual’s perceived risk of infection, among other factors, influences their 460

behavior, which in turn impacts future disease propagation. 461

To illustrate the capabilities of FIEM, we designed a simplified scenario inspired by 462

the early stages of the COVID-19 pandemic. Individuals decide whether to work or not 463
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based on the trade-off between health and economic well-being—abstaining from work 464

lowers income but also reduces infection risk. Our model endogenously propagates the 465

implications of this decision process, leading to slower epidemic growth and reduced 466

peak disease burden but failing to achieve control. In the real world, both health 467

vulnerability and economic precarity vary between individuals and affects incentives and 468

behavior. When we expanded our scenario to include this heterogeneity, we predicted 469

behavioral responses consistent with differential trade-offs, for example finding that 470

individuals with lower socioeconomic status that are less vulnerable to disease maintain 471

the highest rates of continued in-person work during an outbreak and experience the 472

highest peak infection levels. This example scenario ignores many features of COVID-19 473

driven decisions, for example the high proportion of asymptomatic infections, limited 474

testing, misinformation, the role of accumulated savings, the inability of many workers 475

to leave and re-enter the labor force at will, and the purely pro-social motivations of 476

some individuals for engaging in costly disease-avoidance behavior. However, even in a 477

simplified model, our analyses underscore how individualized health-wealth trade-offs 478

and dynamic decision-making contribute to behavior change at the individual level, 479

which carries direct implications for aggregate disease spread. 480

We used our model to evaluate the effects of four policies aimed at reducing disease 481

spread: labor restrictions, unconditional cash transfers, conditional cash transfers, and 482

paid sick leave. Each policy reduced peak and total infections, albeit through different 483

mechanisms and at different costs to individuals and the government. Our key finding is 484

that targeted policies incentivizing infected individuals to abstain from work can lower 485

infection, as expected, but may also increase total labor supply by reducing the 486

infection risk of working, thereby encouraging susceptible individuals to work. Finally, 487

we demonstrate how this framework can identify optimal policy designs that balance the 488

benefits of reduced infections with the associated policy costs, and decompose the 489

heterogeneous impacts these policies have across different sub-populations. We believe 490

this framework has the potential to advance policy-relevant disease modeling in multiple 491

ways, including i) simultaneously outputting epidemiological, microeconomic, and 492

macroeconomic metrics, ii) incorporating the impact of risk-avoidance behaviors that 493

occur independently of mandated behavior change, and iii) centering considerations of 494

equity in policy projections, by producing sub-group specific impacts. 495

The structure of FIEM allows it to be extended in many directions. Currently, our 496

behavioral model makes two key assumptions: First, individuals engage in dynamic 497

utility optimization with a low discount rate, thereby excluding behaviors such as 498

impatience, hyperbolic discounting, and alternatives to dynamic optimization. Second, 499

we assume individuals possess rational expectations (i.e., can accurately assess their 500

current health status and future risks). However, in reality more complex decision 501

models may be at play along with uncertainty over information about the outbreak. 502

These assumptions can be tested with data on human behavior, beliefs, or information 503

transitions, and FIEM can be readily adapted to incorporate these features as 504

warranted. An additional assumption is the exclusion of strategic interactions among 505

individuals. While it is possible to relax this feature, doing so may lead to multiple 506

equilibria in the behavioral model, introducing methodological and computational 507

complexities. Our model currently only considers individual decisions, whereas 508

businesses and other institutions (e.g., schools) also engage in risk-avoidance decision 509

making in response to disease. More critically, our current framework is not designed to 510

describe macroeconomic processes that may also feed back with individual decision 511

making during public health crises, such as changes in labor demand, economic growth 512

or recession, inflationary processes, interest rate changes, among others. However, 513

FIEM can incorporate macroeconomic models and produce integrated forecasts. 514

Beyond rational expectations and economic trade-offs, FIEM can be extended to 515
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incorporate psychological and emotional dimensions of decision-making, capturing a 516

broader sense of well-being than just health or financial. For example, emotional costs 517

such as social isolation, fear, or stigma can be modeled as additional non-monetary 518

terms in the utility function. Individuals who isolate at home may experience a utility 519

penalty, representing loneliness or reduced social contact, which can be estimated using 520

survey-based measures of well-being (83). Similarly, cognitive biases, such as 521

misperceptions of infection risk, overconfidence, or time-inconsistent preferences, can be 522

introduced by adjusting belief structures. For example, perceived infection risk could be 523

modeled as a function of actual prevalence, incorporating bias parameters to reflect 524

optimism or pessimism. These features are commonly explored in behavioral economics 525

and psychology (84; 85) and can be integrated into FIEM’s decision model without 526

disrupting its core structure. These examples highlight how FIEM can use dynamic 527

optimization with additional choice frictions to better approximate the true decision 528

making process and align with other research on the complex determinants of human 529

behavior. 530

The epidemic model considered here was deliberately simplified to highlight 531

concordance with classic compartmental models, limit the number of parameters, and 532

facilitate interpretation of results. This includes omitting explicit tracking of 533

pre-symptomatic and asymptomatic infectious states, which are particularly important 534

for accurately capturing SARS-CoV-2 transmission dynamics and act to limit 535

individuals’ knowledge of their own infectious status. However, FIEM can easily include 536

more complex disease dynamics and health outcomes. For example, we could extend the 537

model to track individuals’ knowledge of their infection status (via testing, symptoms, 538

etc.); imperfect reporting, access, and interpretation of data on population-level disease 539

burden; decisions that impact not only contact probabilities but susceptibility to 540

infection, duration of infectiousness, or propensity for severe disease; prosocial behavior 541

in which individuals incur a cost to avoid transmitting disease to others even in the 542

absence of individual risk; and capacity constraints to healthcare resources. Our 543

framework currently classifies individuals into a defined set of strata depending on the 544

combination of their infection state, risk factors, and health decisions, but could readily 545

be extended to an individual-based model, albeit at substantially increased 546

computational cost. 547

Our model captures the components essential for credible prediction of disease 548

spread and endogenous behavioral responses in a way that is often omitted by other 549

attempts to integrate these two features (e.g., disease spread models with substantial 550

heterogeneity but no explicit individual-level optimization informing behavior, or 551

economic models of human behavior with non-standard epidemiological processes 552

37; 58; 61; 62; 72; 73). However, past work has included other important details that 553

were omitted here but could be integrated into future work. For example, (74) present a 554

rich behavioral model, which captures detailed decisions about time use (i.e., leisure in 555

and outside of home, work in person, and teleworking), the production and consumption 556

of different types of goods (i.e., leisure goods outside of home and consumption within 557

home), and model parameters that are at least partially fitted to match real world data. 558

(73) presents a coupled epi-economics model that formally captures how financial 559

constraints enter the individual’s decision problem. Finally, the framework proposed by 560

(62) effectively replicates the economic and epidemiological factors of a specific 561

geography. While FIEM does not currently incorporate these features, future work can 562

extend the framework to capture these valuable model components to improve the 563

specificity of predictions. 564

The decision to abstain from work to avoid infection was particularly salient during 565

the early phase of COVID-19, when rapid at-home tests, medical-grade face-masks, and 566

vaccines were unavailable. Our model could be extended to consider the additional 567
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decisions processes individuals engage in to utilize these interventions, but must include 568

that individuals incur “costs” beyond lost income that may be harder to quantify—such 569

as stigma, social isolation, inconvenience, discomfort, or irrational fears. For other 570

infectious diseases, different decision paradigms arise—to adhere to long-term, 571

nausea-inducing drugs to prevent eventual disease progression or transmission; to lose a 572

potential romantic partner by disclosing an STI, and so on. Our framework allows for 573

extensions in these directions, and we anticipate that the limitation to including them 574

will not be the ability to encode a reasonable model within the FIEM structure, but to 575

identify data appropriate for estimating model parameters. Here we have merely 576

“calibrated” our model—choosing a single reasonable parameter set that roughly 577

recreates a small set of aggregate epidemiological or economic metrics. Future work will 578

present methods for integrating diverse datasets for formal inference of FIEM 579

parameters. Surveys like the COVID-19 Impact Survey (86), which captured income, 580

employment, and health data at the individual level across the U.S. in spring 2020, show 581

that relevant risk group parameters can be estimated rapidly during an outbreak. We 582

hope that case studies using this framework will provide the motivation for behavioral 583

and microeconomic data collection as a core component of pandemic preparedness 584

activities, so that future disease-behavior models can produce more informed policy 585

recommendations and include uncertainty intervals in all projections. 586
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S4 Table. A summary of policy scenarios and resulting cost breakdown by 610

income loss and subsidy payment. Values in parentheses indicate the proportion 611

of each cost component to the total cost. Total daily cost per capita includes both lost 612

wages due to the disease (compared to a disease-free scenario with 75% labor supply) 613

and the cost of any subsidy payments provided. 614

S5 Table. Comparison of FIEM (shotdown decision model) and Theoretical 615

Compartmental Model under different parameter settings. FIEM is initialized 616

with a single risk group to align with the assumptions of the theoretical compartmental 617

model for direct comparison under varying parameter settings. 618

S1 Fig. Comparison of FIEM-Epi (shotdown decision model) and 619

Theoretical Compartmental Model. Here, the transmission rate = 0.3, the rate of 620

recovery = 0.14, and the rate of waning = 0.0043. FIEM is initialized with a single risk 621

group to align with the assumptions of the theoretical compartmental model for direct 622

comparison. 623

S2 Fig. Model testing with fixed work decisions. This figure shows the 624

infection prevalence (%) under two fixed labor supply scenarios: (a) infection prevalence 625

when all individuals are participating in the workforce, and (b) infection prevalence 626

when only half of the individuals are participating. The color scale represents different 627

initial population distributions with varying heterogeneous group sizes. 628

S3 Fig. Effect of endogenous behavior change on disease dynamics with 629

waning rate (α) = 0. The time-course of infection and employment levels for the 630

feedback-informed epidemiological model. (a) The share of the population that is 631

infected under different models. (b) The share of the population that choose to work 632

each period under different models. 633

S4 Fig. Model calibration for individual work behaviors. This figure analyzes 634

labor supply under four distinct scenarios: (a) Baseline scenario without disease 635

dynamics: Assess how work decisions respond to the utility difference between working 636

and not working without considering the impact of disease. (b) Disease with fixed 637

infection probability: Assume a constant probability of infection, independent of 638

individual behavior. The plot illustrates the value functions of infection state and labor 639

supply decision as a function of the utility cost of infection. (c) Infection impacts utility 640

from working: Individuals working while infected face an additional utility cost beyond 641

the utility from consumption. The plot shows value functions by infection state and 642

work decision as a function of the utility cost of infection. (d) Labor supply vs. utility 643

cost of working while infected: Under the same conditions as in (c), this plot depicts 644

labor supply rates as a function of the utility cost of working while infected. 645

S5 Fig. Heatmap of labor supply decisions based on infection probability. 646

The x-axis represents the probability of getting infected while participating in the 647

workforce, and the y-axis represents the probability of getting infected while not 648

participating. The color scale indicates the probability of choosing to work, with redder 649

colors denoting a higher likelihood of working. 650

S6 Fig. Sensitivity analysis to the amount of information individuals have 651

about the aggregate infection rates when making decisions. A lag of 0 means 652

individuals know the true aggregate infection rate in real time, a lag of 7 means 653
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individuals know the aggregate infection rate from 7 periods prior to the current one, 654

and a lag of 14 means individuals know the aggregate infection rate 14 periods prior to 655

the current one. The top panel reports the share of the population that is infected and 656

the bottom panel reports the share of the population that works under these three 657

information structures. 658

S7 Fig. Sensitivity analysis of selected model parameters. The black curves in 659

each panel show our baseline parameter values as given in Tables S1 and S2. Row (1) 660

reports the population infection rate, Row (2) reports the share of the population that 661

choose to work, and rows (3–5) report the work decisions by susceptible, infected and 662

recovered groups. Column (a) varies the recovery rate, (b) alters the variance of hassle 663

cost, (c) varies the sensitivity of vulnerable populations to the infection risk, (d) alters 664

the sensitivity of hassle cost, and (e) varies the immunity winning rate. 665

S8 Fig. Illustration of decision dynamics with heterogeneous populations. 666

Panel (a) captures the share of the population that is infected; (b) includes the share of 667

the population that choose to work; (c) shows the population infection rate against the 668

share of the population that choose to work; (d–f) show the work choice probabilities for 669

susceptible, infected, and recovered health state groups respectively. Five populations 670

are simulated and differ based on the distribution of non-infection characteristics (i.e., 671

vulnerability to the disease and SES). The black curve represents the baseline parameter 672

values. 673

S9 Fig. Average infection and labor supply by different policy interventions. 674

This figure plots the average share of the population that is infected and working under 675

different policy interventions as a function of their income loss. Panel a plots the 676

average infection rates over the time period when the policies are in effect, while panel b 677

plots the average share of the population that chose to work during this time period. 678

The cost captures lost wages an individual experiences relative to their baseline wage 679

earnings predicted by the model when there is no intervention. The simulated policies 680

include: a labor restriction policy that limits how much of the population is able to 681

choose to work; an unconditional cash transfer that is delivered to all individuals each 682

period; a conditional cash transfer that is delivered to individuals that choose to not 683

work each period; and a paid sick leave policy, which allows infected individuals to earn 684

their full wage if they choose to not work while infected. 685

S10 Fig. Average infection and labor supply by different policy 686

interventions. This figure plots the average share of the population that is infected 687

and working under different policy interventions as a function of their income loss. 688

Panel a plots the average infection rates over the time period when the policies are in 689

effect, while panel b plots the average share of the population that chose to work during 690

this time period. The cost captures government spending to fund these cash transfers. 691

The simulated policies include: a labor restriction policy that limits how much of the 692

population is able to choose to work; an unconditional cash transfer that is delivered to 693

all individuals each period; a conditional cash transfer that is delivered to individuals 694

that choose to not work each period; and a paid sick leave policy, which allows infected 695

individuals to earn their full wage if they choose to not work while infected. 696
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